Abstract
This study aims to indicate the potential of artificial intelligence (AI) in epidemiological reports of decayed, missed and restored teeth. As a proof of concept our study model used panoramic x-ray images and an AI algorithm for tooth numbering, detection of the caries and restorations with accuracy over 80% for such diagnostic tasks. The output came as the number of decayed, missed and restored teeth according to patient´s age and the DMFT index (number of decayed, missing, and filled teeth) which varied from 3.6 (up to 20 years old) to 20.4 (+60 years old). Thus, it is suggested that AI is a promising method to automate health data collection through the analysis of x-rays.
References
Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Secretaria de Vigilância em Saúde. SB Brasil 2010: Pesquisa Nacional de Saúde Bucal: resultados principais / Ministério da Saúde. Secretaria de Atenção à Saúde. Secretaria de Vigilância em Saúde. – Brasília : Ministério da Saúde, 2012. 116 p. (Accessed February 27, 2023). Available in: https://bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal.pdf
Roncalli A.G., Silva N.N., Nascimento A.C., Freitas C.H.S.M., Casotti E., Peres K.G., Moura L., Peres M.A., Freire M.C.M., Cortes M.I.S., Vettore M.V., Paludetto Júnior M., Figueiredo N., Goes P.S.A., Pinto R.S., Marques R.A.A., Moysés S.J., Reis S.C.G.B., Narvai P.C. Relevant methodological issues from the SBBrasil 2010 Project for national health surveys. Cad Saude Publica. 2012; 28 Suppl: s40-57. doi: https://doi.org/10.1590/s0102-311x2012001300006
Brasil. Relatório da consulta pública do projeto técnico da pesquisa nacional de saúde bucal 2020. SB Brasil 2020. 35 p. (Accessed February 27, 2023). Available in: http://189.28.128.100/dab/docs/portaldab/documentos/cgsb/RelatorioConsultaPublicaSBBrasil.pdf
Azevedo J.S., Azevedo M.S., Oliveira L.J.C., Correa M.B., Demarco F.F. Needs for dental prostheses and their use in elderly Brazilians according to the National Oral Health Survey (SBBrazil 2010): prevalence rates and associated factors. Cad Saude Publica. 2017; 33 (8): e00054016. doi: https://doi.org/10.1590/0102-311X00054016
Miyazaki H., Jones J.A., Beltrán-Aguilar E.D. Surveillance and monitoring of oral health in elderly people. Int Dent J. 2017; 67 Suppl 2 (Suppl 2): 34-41. doi: https://doi.org/10.1111/idj.12348
Hosny A., Parmar C., Quackenbush J., Schwartz L.H., Aerts H.J.W.L. Artificial intelligence in radiology. Nat Rev Cancer. 2018; 18 (8): 500-510. doi: https://doi.org/10.1038/s41568-018-0016-5
Heo M.S., Kim J.E., Hwang J.J., Han S.S., Kim J.S., Yi W.J., Park I.W. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2021; 50 (3): 20200375. doi: https://doi.org/10.1259/dmfr.20200375
Başaran M., Çelik Ö., Bayrakdar I.S., Bilgir E., Orhan K., Odabaş A., Aslan A.F., Jagtap R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol 2022; 38 (3): 363-369. doi: https://doi.org/10.1007/s11282-021-00572-0
Bayrakdar I.S., Orhan K., Akarsu S., Çelik Ö., Atasoy S., Pekince A., Yasa Y., Bilgir E., Sağlam H., Aslan A.F., Odabaş A. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiol. 2022; 38 (4): 468-479. doi: https://doi.org/10.1007/s11282-021-00577-9
Chen X., Guo J., Ye J., Zhang M., Liang Y. Detection of proximal caries lesions on bitewing radiographs using deep learning method. Caries Res. 2022; 56 (5-6): 455-463. doi: https://doi.org/10.1159/000527418
Abdalla-Aslan R., Yeshua T., Kabla D., Leichter I., Nadler C. An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020; 130 (5): 593-602. doi: https://doi.org/10.1016/j.oooo.2020.05.012
Chen S.L., Chen T.Y., Huang Y.C., Chen C.A., Chou H.S., Huang Y.Y., Lin W.C., Li T.C., Yuan J.J., Abu P.A.R., Chiang W.Y. Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs. IEEE Access 2022; 10: 118654-64. doi: https://doi.org/10.1109/ACCESS.2022.3220335
Costa E.D., Gaêta-Araujo H., Carneiro J.A., Zancan B.A.G., Baranauskas J.A., Macedo A.A.M., Tirapelli C. Development of a dental digital dataset for research in artificial intelligence: the importance of labeling performed by radiologists. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023 Dec. doi: https://doi.org/10.1016/j.oooo.2023.12.006
Carneiro J.A. Enhanced tooth segmentation algorithm for panoramic radiographs. [dissertation]. Ribeirão Preto: Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; 2023 [cited in 2024-03-10]. doi:10.11606/D.59.2023.tde-20022024-073306
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 CC-BY-NC-SA 4.0