Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Comparative Study of the Bioactivity of Two Bioceramic Materials
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Apatite; Bbioactivity; Spectroscopy; Calcium phosphate; Biodentine ™; MTA Repair HP®
Apatita; Bioactividad; Espectroscopía; Fosfato de calcio; Biodentine™; MTA Repair HP®

Cómo citar

Trujillo-Hernández, M., Flores-Ventura, R. E., Suárez-Porras MSc, A., García-González PhD, L., Hernández-Torres PhD, J., Zamora-Peredo PhD, L., & Suárez-Franco DDS, MSc, PhD, J. L. (2018). Comparative Study of the Bioactivity of Two Bioceramic Materials. Odovtos International Journal of Dental Sciences, 21(2), 73–81. https://doi.org/10.15517/ijds.v21i2.37061

Resumen

Los materiales a base de silicato de calcio han demostrado ser bioactivos debido a su capacidad para producir apatita carbonatada biológicamente compatible. El objetivo de este estudio fue analizar la bioactividad de Biodentine™ y MTA Repair HP® en contacto con discos de dentina humana, que se obturaron y dividieron aleatoriamente para formar cuatro grupos: grupo 1 Biodentine™, grupo 2 MTA Repair HP®, grupo control positivo MTA Angelus® y grupo control negativo IRM®, los cuales se incubaron en solución PBS durante 10 días, para posterior análisis por medio de MEB-EDS y Espectroscopía Raman. Los tres materiales a base de silicato de calcio analizados en este estudio demostraron ser bioactivos pues al entrar en contacto con una solución a base de fosfato desencadenaron la precipitación inicial de fosfato de calcio amorfo, que actúa como precursor durante la formación de apatita carbonatada.

https://doi.org/10.15517/ijds.v21i2.37061
PDF (English)
HTML (English)
EPUB (English)

Citas

Best M., Porter A. E., Thian E. S., Huang J. Bioceramics: Past, present and for the future. Journal of the European Ceramic Society. 2008; 28 (7): p. 1319-1327.

Wang Z. Bioceramic materials in endodontics. Endodontic Topics. 2015; 32 (1): p. 3-30.

Trope M., Bunes A., Debelian G. Root filling materials and techniques: bioceramics a new hope? Endodontic Topics. 2015; 32 (1): p. 86-96.

Shen Y., Peng B., Yang Y., Ma. J., Haapasalo M. What do different tests tell about the mechanical and biological properties of bioceramic materials? Endodontic Topics. 2013; 32 (1): p. 47-85.

Reyes-Carmona J. F., Felippe M. S., Felippe W. T. Biomineralization Ability and Interaction of Mineral Trioxide Aggregate and White Portland Cement With Dentin in a Phosphate-containing Fluid. Journal Of Endodontics. 2009; 35(5): p. 731-736.

Kim J. R., Nosrat A., Fouad A. F. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. Journal of Dentistry. 2016; 43 (2).

Ferracane J. L., Cooper P. R., Smith A. J. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontology. 2010; 98 (1).

Jnl Silva E., Carvalho N. K., Zanon M., Senna P. M., De-Deus G., Zaia A. A. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Dental Materials. 2016; 30 (1): p. 1-5.

Rajasekharan S., Martens L. C., Cauwels RGEC, Verbeeck RMH. BiodentineTM material characteristics and clinical applications: a review of the literature. European Archives of Paediatric Dentistry. 2014; 15 (3): p. 147-158.

Septodont. Saint-Maur-des-Fossés, France. Biodentine™ scientific file. [Online]. Saint-Maur-des-Fosses; 2010.. Disponible en: http://www.oraverse.com/bio/img/Biodentine-ScientificFile.pdf

Haapasalo M., Parhar M., Huang X., Wei X., Lin J., Shen Y. Clinical use of bioceramic materials. Endodontic Topics. 2015; 32 (1): p. 97-117.

Tay R., Pashley D. H., Rueggeberg A., Loushine J., Weller R. N. Calcium Phosphate Phase Transformation Produced by the Interaction of the Portland Cement Component of White Mineral Trioxide Aggregate with a Phosphate-containing Fluid. Journal of Endodontics. 2007; 33 (11).

Gandolfi M. G., Taddei P., Tinti A., Prati C. Apatite-forming ability (bioactivity) of ProRoot MTA. International Endodontic Journal. 2010; 43 (10): p. 917-929.

Hench L. L. Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society. 1991; 74 (7): p. 1487-1510.

Martin L., Monticelli F., Brackett W. W., Loushine R. J., Rockman R. A., Ferrari M., et al. Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. Journal of Endodontics. 2007; 33 (3).

Ranjkesh B., Chevallier J., Salehi H., Cuisinier F., Isidor F., Løvschall H. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride. Acta Biomaterialia Odontologica Scandinavica. 2016; 2 (1).

Nelson D. G., Featherstone J. D. Preparation, analysis, and characterization of carbonated apatites. Calcified Tissue International. 1982; 34.

Gandolfi M. G., Taddei P., Tinti A., De Stefano Doringo E., Rossi P. L., Prati C. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clinical Oral Investigations. 2010; 14 (6).

Leng, Chen, Qu. TEM study of calcium phosphate precipitation on HA/TCP ceramics. Biomaterials. 2003; 24 (13).

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.