Resumen
El objetivo de este estudio fue comparar la resistencia de adhesión al cizallamiento (SBS) de cuatro resinas con un cemento a base de silicato utilizando una adhesivo universal "no-wait" de autograbado (SE) y grabado y lavado (ER). Se prepararon bloques acrílicos (n=80, de 2mm de profundidad y un agujero central de 5mm de diámetro). Los agujeros se rellenaron con BiodentineTM (BD) y se dividieron en 4 grupos principales (n=20) según el tipo de resina compuesta utilizada: Grupo FZ250: FiltekTM Z250 Universal Restorative (microhíbrido), Grupo SDR: SDR Plus U Bulk Fill Flowable (bulk-fill de baja viscosidad), Grupo FBP: FiltekTM Bulk Fill Posterior (bulk-fill de alta viscosidad), Grupo EF: EsFlow™ Universal Flowable Composite (nanohíbrido). Para la aplicación de la adhesión se utilizó un adhesivo universal "no-wait" (Clearfil Universal Bond Quick). A continuación, cada grupo se dividió en 2 subgrupos según el modo de grabado aplicado (ER y SE). Se midieron los SBS y se utilizó el estereomicroscopio para identificar los modos de fallo. Las muestras seleccionadas de las superficies de fractura se analizaron mediante SEM. Se utilizaron las pruebas post-hoc de Tukey y ANOVA de una vía para analizar los datos. Hubo diferencias estadísticamente significativas entre los grupos de composites (p<0,05). Cuando la SDR mostró los valores más altos de resistencia a la adhesión en el modo SE (17,13±2,98 MPa), la FBP mostró los valores más bajos de resistencia a la adhesión en el modo ER (8,89±2,46 MPa). La SBS media no fue diferente entre los modos SE y ER (p>0,05). La SBS de la BD a los composites de resina depende del tipo de composite, pero la aplicación de la unión universal "no-wait" en los diferentes modos de grabado es independiente de la SBS de la BD a los composites de resina.
Citas
Kodonas K., Fardi A., Gogos C., Economides N. Scientometric analysis of vital pulp therapy studies. Int Endod J. 2020.
Cushley S., Duncan H.F., Lappin M.J., Chua P., Elamin A.D., Clarke M. Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: A systematic review and meta-analysis. Int Endod J. 2020.
Schmidt A., Schäfer E., Dammaschke T. Shear Bond Strength of Lining Materials to Calcium-silicate Cements at Different Time Intervals. J Adhes Dent. 2017; 19 (2): 129-135.
Kaup M., Schäfer E., Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015; 11:16.
Malkondu Ö., Karapinar Kazandağ M., Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. BioMed Res Int. 2014; 2014: 160951.
Koubi G., Colon P., Franquin J.C., Hartmann A., Richard G., Faure M.O. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clin Oral Investig. 2013; 17 (1): 243-249.
Cantekin K., Avci S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). J Appl Oral Sci. 2014; 22 (4): 302-306.
Heymann H.O., Ritter A.V., Sturdevant C.M. Sturdevant’s Art and Science of Operative Dentistry. 6th ed. St. Louis, MO: Elsevier/ Mosby; 2013.
Çolak H., Tokay U., Uzgur R., Uzgur Z., Ercan E., Hamidi M.M. The effect of different adhesives and setting times on bond strength between Biodentine and composite. J Appl Biomater Funct Mater. 2016; 14 (2): 217-222.
Odabaş M.E., Bani M., Tirali R.E. Shear bond strengths of different adhesive systems to biodentine. ScientificWorldJournal. 2013; 2013: 626103.
Meraji N., Camilleri J. Bonding over Dentin Replacement Materials. J Endod. 2017; 43 (8): 1343-1349.
Cengiz E., Ulusoy N. Microshear Bond Strength of Tri-Calcium Silicate-based Cements to Different Restorative Materials. J Adhes Dent. 2016; 18 (3): 231-237.
Altunsoy M., Tanriver M., Ok E., Kucukyilmaz E. Shear Bond Strength of a Self-adhering Flowable Composite and a Flowable Base Composite to Mineral Trioxide Aggregate, Calcium-enriched Mixture Cement, and Biodentine. J Endod. 2015; 41 (10): 1691-1695.
Cantekin K., Avci S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine(R)). J Appl Oral Sci: revista FOB 2014; 22 (4): 302-306.
International Standards Organization. ISO/TS 11405. Dentistry-Testing of Adhesion to Tooth Structure. Geneva, Switzerland: ISO; 2015.
Alzraikat H., Taha N.A., Qasrawi D., Burrow M.F. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems. Dent Mater J. 2016; 35: 881-887. https://doi.org/10.4012/dmj.2016-075
Tsujimoto M., Tsujimoto Y., Ookubo A., Shiraishi T., Watanabe I., Yamada S., Hayashi Y. Timing for composite resin placement on mineral trioxide aggregate. J Endod. 2013;39:1167-1170. https:// doi.org/10.1016/j.joen.2013.06.009
Ahmed M.H., Yoshihara K., Mercelis B., Van Landuyt K., Peumans M., Van Meerbeek B. Quick bonding using a universal adhesive. Clin Oral Investig. 2020; 24 (8): 2837-2851. doi: 10.1007/s00784-019-03149-8
Kuraray Noritake (2018) Clearfil Universal Bond quick brochure. https://kuraraydental.com/wp-content/uploads/2018/12/clearfil-universal-bond quick-new-cap-brochure-sm.pdf Accessed 01 Nov 2018
Hashem D.F., Foxton R., Manoharan A., et al. The physical characteristics of resin composite calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater. 2014; 30: 343-349.
Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent. 2013; 41: 600-610.
Anastasiadis K., Koulaouzidou E.A., Palaghias G., Eliades G. Bonding of composite to base materials: effects of adhesive treatments on base surface properties and bond strength. J adhes Dent. 2018; 20: 151-164. https://doi.org/10.3290/j.jad.a40302
Mahdan M.H., Nakajima M., Foxton R.M., Tagami J. Combined effect of smear layer characteristics and hydrostatic pulpal pressure on dentine bond strength of HEMA-free and HEMA-containing adhesives. J Dent. 2013; 41: 861-871. https://doi.org/10.1016/j.jdent.2013.07.002
Gregoire G., Dabsie F., Dieng-Sarr F., Akon B., Sharrock P. Solvent composition of one-step self-etch adhesives and dentine wettability. J Dent. 2011; 39: 30-39. https://doi.org/10.1016/j.jdent.2010.09.008
Sezinando A. Looking for the ideal adhesive–a review. Rev Port Estomatol Med Dent Circ Maxilofac. 2014; 55: 194-206. https://doi. org/10.1016/j.rpemd.2014.07.004
Namazikhah M.S., Nekoofar M.H., Sheykhrezae M.S., et al. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J. 2008; 41: 108-116.
Shokouhinejad N., Nekoofar M.H., Iravani A. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod. 2010; 36: 871-874.
Torabinejad M., Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999; 25: 197-205.
Watts J.D., Holt D.M., Beeson T.J., et al. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod. 2007; 33: 970-973.
Roy C.O., Jeansonne B.G., Gerrets T.F. Effect of an acid environment on leakage of root-end filling materials. J Endod. 2001; 27: 7-8.
Ilie N., Keßler A., Durner J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk‑fill resin based composites. J Dent. 2013;41:695‑702.
Van Ende A., De Munck J., Van Landuyt K.L., Poitevin A., Peumans M., Van Meerbeek B., et al. Bulk‑filling of high C‑factor posterior cavities: Effect on adhesion to cavity‑bottom dentin. Dent Mater. 2013; 29: 269‑277.
Moorthy A., Hogg C.H., Dowling A.H., Grufferty B.F., Benetti A.R., Fleming G.J., et al. Cuspal deflection and microleakage in premolar teeth restored with bulk‑fill flowable resin‑based composite base materials. J Dent. 2012; 40: 500‑505.
Saito T., Takamizawa T., Ishii R., Tsujimoto A., et al. Influence of Application Time on Dentin Bond Performance in Different Etching Modes of Universal Adhesives. Oper Dent. 2020; 45 (2): 183-195.
Palma P.J., Marques J.A., Falacho R.I., Vinagre A., Santos J.M., Ramos J.C. Does delayed restoration improve shear bond strength of different restorative protocols to calcium silicate-based cements?. Materials (Basel). 2018;11. https://doi.org/10.3390/ma11112216
Oskoee S.S., Kimyai S., Bahari M., Motahari P., Eghbal M.J., Asgary S. Comparison of shear bond strength of calcium-enriched mixture cement and mineral trioxide aggregate to composite resin. J Contemp Dent Pract. 2011; 12: 457-462. https://doi.org/10.5005/jpjournals-10024-1076
Bachoo I.K., Seymour D., Brunton P. A biocompatible andbioactive replacement for dentine: is this a reality? The properties and uses of a novel calcium-based cement. Br Dent J. 2013; 214 (2): 1-7.
Placido E., Meira J.B.C., Lima R.G., Muench A., de Souza R.M., Ballester R.Y. Shear versus micro-shear bond strength test: afinite element stress analysis. Dent Mater. 2007; 23 (9): 1086-1092.