Resumen
Se han reportado evidencias que demuestran que la percepción somatosensorial puede ser alterada por la lesión trigeminal producto de procedimientos quirúrgicos maxilofaciales. Sin embargo, se desconoce cuáles son los procedimientos quirúrgicos que más frecuentemente producen lesiones trigeminales, y los factores de riesgo. De la misma forma hay poca información sobre lo que se ha determinado en modelos preclínicos de lesión trigeminal. El objetivo de este artículo es integrar información relevante sobre la lesión trigeminal desde los hallazgos clínicos como los principales estudios de ciencia básica. Esta revisión demuestra que la edad y el tipo de procedimiento son fundamentales para inducir alteraciones sensoriales orofaciales, así como los procesos neurobiológicos que subyacen a estos padecimientos.
Citas
Baad-Hansen, L., Arima, T., Arendt-Nielsen, L., Neumann-Jensen, B., & Svensson, P. (2010). Quantitative sensory tests before and 1(1/2) years after orthognathic surgery: a cross-sectional study. J Oral Rehabil, 37 (5), 313-321. doi:10.1111/j.1365-2842.2010.02059.x
Montes Angeles, C. D., Andrade Gonzalez, R. D., Hernandez, E. P., García Hernández, A. L., & Pérez Martínez, I. O. (2020). Sensory, Affective, and Cognitive Effects of Trigeminal Injury in Mice. J Oral Maxillofac Surg, 78 (12), 2169-2181. doi:10.1016/j.joms.2020.07.212
Pérez-Martínez, I. O., Acevedo-Roque, C. R., Montes-Angeles, C. D., Martínez, M., & Miranda, F. (2019). Mental nerve injury induces novelty seeking behaviour leading to increasing ethanol intake in Wistar rats. Arch Oral Biol, 99, 66-72. doi:10.1016/j.archoralbio.2019.01.004
Pillai, R. S., Pigg, M., List, T., Karlsson, P., Mladenović, Ž., Vase, L., Baad-Hansen, L. (2020). Assessment of Somatosensory and Psychosocial Function of Patients With Trigeminal Nerve Damage. Clin J Pain, 36 (5), 321-335. doi:10.1097/ajp.0000000000000806
Van der Cruyssen, F., Peeters, F., Gill, T., De Laat, A., Jacobs, R., Politis, C., & Renton, T. (2020). Signs and symptoms, quality of life and psychosocial data in 1331 post-traumatic trigeminal neuropathy patients seen in two tertiary referral centres in two countries. J Oral Rehabil, 47 (10), 1212-1221. doi:10.1111/joor.13058
Said-Yekta, S., Smeets, R., Esteves-Oliveira, M., Stein, J. M., Riediger, D., & Lampert, F. (2012). Verification of nerve integrity after surgical intervention using quantitative sensory testing. J Oral Maxillofac Surg, 70 (2), 263-271. doi:10.1016/j.joms.2011.03.065
Van Sickels, J. E., Hatch, J. P., Dolce, C., Bays, R. A., & Rugh, J. D. (2002). Effects of age, amount of advancement, and genioplasty on neurosensory disturbance after a bilateral sagittal split osteotomy. J Oral Maxillofac Surg, 60 (9), 1012-1017. doi:10.1053/joms.2002.34411
Nakagawa, K., Ueki, K., Takatsuka, S., Takazakura, D., & Yamamoto, E. (2001). Somatosensory-evoked potential to evaluate the trigeminal nerve after sagittal split osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 91 (2), 146-152. doi:10.1067/moe.2001.112331
Hågensli, N., Stenvik, A., & Espeland, L. (2014). Asymmetric mandibular prognathism: outcome, stability and patient satisfaction after BSSO surgery. A retrospective study. J Craniomaxillofac Surg, 42 (8), 1735-1741. doi:10.1016/j.jcms.2014.06.008
Al-Bishri, A., Dahlberg, G., Barghash, Z., Rosenquist, J., & Sunzel, B. (2004). Incidence of neurosensory disturbance after sagittal split osteotomy alone or combined with genioplasty. Br J Oral Maxillofac Surg, 42 (2), 105-111. doi:10.1016/j.bjoms.2003.12.002
Baas, E. M., de Lange, J., & Horsthuis, R. B. (2010). Evaluation of alveolar nerve function after surgical lengthening of the mandible by a bilateral sagittal split osteotomy or distraction osteogenesis. Int J Oral Maxillofac Surg, 39 (6), 529-533. doi:10.1016/j.ijom.2010.03.003
Thygesen, T. H., Bardow, A., Norholt, S. E., Jensen, J., & Svensson, P. (2009). Surgical risk factors and maxillary nerve function after Le Fort I osteotomy. J Oral Maxillofac Surg, 67 (3), 528-536. doi:10.1016/j.joms.2008.07.004
Kim, Y. K., Kim, S. G., & Kim, J. H. (2011). Altered sensation after orthognathic surgery. J Oral Maxillofac Surg, 69(3), 893-898. doi:10.1016/j.joms.2010.10.025
Benoliel, R., Birenboim, R., Regev, E., & Eliav, E. (2005). Neurosensory changes in the infraorbital nerve following zygomatic fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 99 (6), 657-665. doi:10.1016/j.tripleo.2004.10.014
Mueller, C. K., Zeiß, F., Mtsariashvili, M., Thorwarth, M., & Schultze-Mosgau, S. (2012). Correlation between clinical findings and CT-measured displacement in patients with fractures of the zygomaticomaxillary complex. J Craniomaxillofac Surg, 40(4), e93-98. doi:10.1016/j.jcms.2011.05.009
He, J., Chen, X., Yuan, H., Zhang, P., Jiang, H., Wang, K., & Svensson, P. (2021). Quantitative sensory testing of mandibular somatosensory function following orthognathic surgery-A pilot study in Chinese with class III malocclusion. J Oral Rehabil. doi:10.1111/joor.13225
Kabasawa, Y., Harada, K., Jinno, S., Satoh, Y., Maruoka, Y., & Omura, K. (2006). A new evaluation method for neurosensory disturbance in the chin of patients undergoing mandibular sagittal split ramus osteotomy: an application of the heat flux technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 102 (6), 719-724. doi:10.1016/j.tripleo.2005.11.001
Politis, C., Sun, Y., Lambrichts, I., & Agbaje, J. O. (2013). Self-reported hypoesthesia of the lower lip after sagittal split osteotomy. Int J Oral Maxillofac Surg, 42 (7), 823-829. doi:10.1016/j.ijom.2013.03.020
Ueki, K., Hashiba, Y., Marukawa, K., Nakagawa, K., Alam, S., Okabe, K., & Yamamoto, E. (2009). The effects of changing position and angle of the proximal segment after intraoral vertical ramus osteotomy. Int J Oral Maxillofac Surg, 38(10), 1041-1047. doi:10.1016/j.ijom.2009.04.021
Thygesen, T. H., Bardow, A., Helleberg, M., Norholt, S. E., Jensen, J., & Svensson, P. (2008). Risk factors affecting somatosensory function after sagittal split osteotomy. J Oral Maxillofac Surg, 66 (3), 469-474. doi:10.1016/j.joms.2007.06.666
Matsumoto, K., Morita, K., Jinno, S., & Omura, K. (2014). Sensory changes after tongue reduction for macroglossia. Oral Surg Oral Med Oral Pathol Oral Radiol, 117 (1), e1-2. doi:10.1016/j.oooo.2012.02.037
Leizerovitz, M., & Leizerovitz, O. (2013). Reduced complications by modified and grafted coronectomy vs. standard coronectomy--a case series. Alpha Omegan, 106(3-4), 81-89.
Yan, Z. Y., Yan, X. Y., Guo, C. B., Xie, Q. F., Yang, G. J., & Cui, N. H. (2020). Somatosensory changes in Chinese patients after coronectomy vs. total extraction of mandibular third molar: a prospective study. Clin Oral Investig, 24 (9), 3017-3028. doi:10.1007/s00784-019-03169-4
Poort, L. J., van Neck, J. W., & van der Wal, K. G. (2009). Sensory testing of inferior alveolar nerve injuries: a review of methods used in prospective studies. J Oral Maxillofac Surg, 67 (2), 292-300. doi:10.1016/j.joms.2008.06.076
Al-Bishri, A., Rosenquist, J., & Sunzel, B. (2004). On neurosensory disturbance after sagittal split osteotomy. J Oral Maxillofac Surg, 62(12), 1472-1476. doi:10.1016/j.joms.2004.04.021
Barron, R. P., Benoliel, R., Zeltser, R., Eliav, E., Nahlieli, O., & Gracely, R. H. (2004). Effect of dexamethasone and dipyrone on lingual and inferior alveolar nerve hypersensitivity following third molar extractions: preliminary report. J Orofac Pain, 18 (1), 62-68.
Seo, K., Inada, Y., Terumitsu, M., Nakamura, T., Shigeno, K., Tanaka, Y., . . . Matsuzawa, H. (2013). Protracted delay in taste sensation recovery after surgical lingual nerve repair: a case report. J Med Case Rep, 7, 77. doi:10.1186/1752-1947-7-77
Grelik, C., Allard, S., & Ribeiro-da-Silva, A. (2005). Changes in nociceptive sensory innervation in the epidermis of the rat lower lip skin in a model of neuropathic pain. Neurosci Lett, 389 (3), 140-145. doi:10.1016/j.neulet.2005.07.056
Barghash, Z., Larsen, J. O., Al-Bishri, A., & Kahnberg, K. E. (2013). Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves. Int J Oral Maxillofac Surg, 42 (12), 1566-1574. doi:10.1016/j.ijom.2013.04.017
Kim, H. Y., Park, C. K., Cho, I. H., Jung, S. J., Kim, J. S., & Oh, S. B. (2008). Differential Changes in TRPV1 expression after trigeminal sensory nerve injury. J Pain, 9 (3), 280-288. doi:10.1016/j.jpain.2007.11.013
Zakir, H. M., Mostafeezur, R. M., Suzuki, A., Hitomi, S., Suzuki, I., Maeda, T., . . . Kitagawa, J. (2012). Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS One, 7 (9), e44023. doi:10.1371/journal.pone.0044023
Zuniga, J. R. (1999). Trigeminal ganglion cell response to mental nerve transection and repair in the rat. J Oral Maxillofac Surg, 57 (4), 427-437. doi:10.1016/s0278-2391 (99) 90284-7
Nakagawa, K., Takeda, M., Tsuboi, Y., Kondo, M., Kitagawa, J., Matsumoto, S., Iwata, K. (2010). Alteration of primary afferent activity following inferior alveolar nerve transection in rats. Mol Pain, 6, 9. doi:10.1186/1744-8069-6-9
Hossain, M. Z., Shinoda, M., Unno, S., Ando, H., Masuda, Y., Iwata, K., & Kitagawa, J. (2017). Involvement of microglia and astroglia in modulation of the orofacial motor functions in rats with neuropathic pain. Journal of Oral Biosciences, 59 (1), 17-22. doi:https://doi.org/10.1016/j.job.2016.11.003
Piao, Z. G., Cho, I. H., Park, C. K., Hong, J. P., Choi, S. Y., Lee, S. J., Oh, S. B. (2006). Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain, 121 (3), 219-231. doi:10.1016/j.pain.2005.12.023
Vit, J. P., Jasmin, L., Bhargava, A., & Ohara, P. T. (2006). Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol, 2 (4), 247-257. doi:10.1017/s1740925x07000427
Hossain, M. Z., Unno, S., Ando, H., Masuda, Y., & Kitagawa, J. (2017). Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int J Mol Sci, 18(10). doi:10.3390/ijms18102051
Martin, Y. B., Malmierca, E., Avendaño, C., & Nuñez, A. (2010). Neuronal disinhibition in the trigeminal nucleus caudalis in a model of chronic neuropathic pain. Eur J Neurosci, 32 (3), 399-408. doi:10.1111/j.1460-9568.2010.07302.x
Kiyomoto, M., Shirota, T., Moriya, T., Sato, H., Nakamura, S., & Inoue, T. (2018). Experimental Study on Involvement of the Central Nervous System in Inferior Alveolar Nerve Damage-Associated Hyperalgesia of the Mental Region. J Oral Maxillofac Surg, 76 (10), 2089.e2081-2089.e2088. doi:10.1016/j.joms.2018.06.021
Ouachikh, O., Hafidi, A., Boucher, Y., & Dieb, W. (2018). Electrical Synapses are Involved in Orofacial Neuropathic Pain. Neuroscience, 382, 69-79. doi:10.1016/j.neuroscience.2018.04.041
Mills, E. P., Di Pietro, F., Alshelh, Z., Peck, C. C., Murray, G. M., Vickers, E. R., & Henderson, L. A. (2018). Brainstem Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. J Neurosci, 38 (2), 465-473. doi:10.1523/jneurosci.1647-17.2017
Tamada, M., Ohi, Y., Kodama, D., Miyazawa, K., Goto, S., & Haji, A. (2021). Modulation of excitatory synaptic transmissions by TRPV1 in the spinal trigeminal subnucleus caudalis neurons of neuropathic pain rats. Eur J Pharmacol, 913, 174625. doi:10.1016/j.ejphar.2021.174625
Colloca, L., Ludman, T., Bouhassira, D., Baron, R., Dickenson, A. H., Yarnitsky, D., Raja, S. N. (2017). Neuropathic pain. Nat Rev Dis Primers, 3, 17002. doi:10.1038/nrdp.2017.2
Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP Basic Pain Terminology. Pain, 137 (3), 473-477. doi:10.1016/j.pain.2008.04.025
Bennett, G. J. (2012). What is spontaneous pain and who has it? J Pain, 13(10), 921-929. doi:10.1016/j.jpain.2012.05.008
Hillerup, S. (2007). Iatrogenic injury to oral branches of the trigeminal nerve: records of 449 cases. Clin Oral Investig, 11(2), 133-142. doi:10.1007/s00784-006-0089-5
Hashemi, H. M. (2010). Neurosensory function following mandibular nerve lateralization for placement of implants. Int J Oral Maxillofac Surg, 39(5), 452-456. doi:10.1016/j.ijom.2010.02.003