Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Características de la impresión 3D y propiedades mecánicas de un bioandamio generado a partir de un Micro-CT Scan, utilizando la técnica de modelado por deposición fundida
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Bio scaffolding; PLA; 3D printing; FDM; Biomaterial; Bone [AND] defect; Diatoms; Calcium phosphate.
Bioandamiaje; PLA; Impresión 3D; FDM; Biomaterial; Defecto[AND]óseo; Diatomeas; Fosfato de calcio.

Cómo citar

González-Sánchez, N., Jensen-Líos, N., Hernández-Montoya, D., Campos Zumbado, J. E., & Oviedo-Quirós, J. (2023). Características de la impresión 3D y propiedades mecánicas de un bioandamio generado a partir de un Micro-CT Scan, utilizando la técnica de modelado por deposición fundida. Odovtos International Journal of Dental Sciences, 25(2), 112–122. https://doi.org/10.15517/ijds.2022.52671

Resumen

El objetivo es determinar cuál biopolímero presenta las mejores características de impresión 3D y propiedades mecánicas para la fabricación de un bioandamiaje, utilizando la técnica de impresión por deposición fundida, con modelos generados a partir de un  archivo en formato STL que se obtuvo de un Micro-CT Scan de una estructura osea de cresta iliaca bovina. Mediante un estudio exploratorio, se realizaron 3 grupos de estudio con trece estructuras impresas de cada uno. El primero, se compone 100% de PLA. El segundo, 90B,  se le agrega 1g de extracto de diatomea, y el tercero, 88C, se diferencia del anterior ya que contiene además, 1g de fosfato de calcio. A las 39 estructuras impresas se les realizó una prueba de inspección visual, por lo que se requirió la confección de un patrón de oro en resina, con mayor detalle y similitud a la estructura ósea escaneada. Finalmente, las estructuras fueron sometidas a una fuerza compresiva (N) para la obtención del módulo de elasticidad (MPa) y de la resistencia compresiva (MPa) de cada una de ellas. Se obtuvo una diferencia estadísticamente significativa (p=0,001) en las propiedades de impresión del biomaterial 88C, con respecto al 90B y al PLA puro, presentando las mejores características de impresión 3D.  Además, obtuvo las mejores propiedades mecánicas en comparación con los otros grupos de materiales. Aunque la diferencia entre estos no fue estadísticamente significativa (p=0,388), en las estructuras del biomaterial 88C, se pudieron observar valores de resistencia compresiva (8,84692 MPa) y módulo de elasticidad (43,23615 MPa) que son semejantes a los del hueso esponjoso de los maxilares. A razón de este resultado, el biomaterial 88C cuenta con el potencial para ser utilizado en la fabricación de bioandamiajes en la ingeniería tisular.

https://doi.org/10.15517/ijds.2022.52671
PDF (English)
HTML (English)
EPUB (English)

Citas

Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V., et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int J Mol Sci. 2016 Nov 25; 17 (12): 1974.

Murphy W., Black J., Hastings G. Handbook of biomaterial properties. 2nd ed. New York: Springer. 2016.

Bose S., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today (Kidlington). 2013 Dec 01; 16 (12): 496-504.

Hutmacher D.W., Schantz J.T., Lam C.X.F., Tan K.C., Lim T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007 Jul-Aug; 1 (4): 245-260.

Amoda A., Borkiewicz L., Rivero-Müller A., Alam P. Sintered nanoporous biosilica diatom frustules as high-efficiency cell-growth and bone-mineralization platforms. Mater Today Commun. 2020 Feb 24; 1-9.

Serra T., Mateos-Timoneda M.A., Planell J.A., Navarro M. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine: A versatile tool in regenerative medicine. Organogenesis. 2013 Oct 1; 9 (4); 239-244.

Rodrigues N., Benning M., Ferreira A.M., Dixon L., Dalgarno K. Manufacture and characterization of porous PLA scaffolds. Proceeding CIRP. 2016 Aug 26; 49: 33-8.

Orhan K. Micro-computed Tomography (micro-CT) in Medicine and Engineering. 1st ed.New York: Springer. 2020.

Maher S., Kumeria T., Aw M.S., Losic D., Martín-del-Campo M., Rosales-Ibañez R., et al. Diatom Silica for Biomedical Applications: Recent Progress and Advances. Advanced Healthcare Materials. 2018 Oct; 7 (19): e1800552 .

Martín-del-Campo M., Rosales-Ibañez R., Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. International Journal of Molecular Sciences. 2019 May 02; 20 (9): 2176.

Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive manufacturing of PLA structures using fused deposition modeling: Effect of process parameters on mechanical properties and their optimal selection. Mater Des. 2017 Jun 15; 124: 143-57.

Bakhtiar S.M., Butt H.A., Zeb S., Quddusi D.M., Gul S., Dilshad E. 3D Printing Technologies and Their Applications in Biomedical Science. In: Omics Technologies and Bio-Engineering. Elsevier. 2018; 167-189.

Zhang L., Yang G., Johnson B.N., Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019 Jan 15; 84: 16-33.

Gibson I., Rosen D., Mahyar K. Additive Manufacturing technologies. 3rd ed. Atlanta: Springer. 2020.

The story behind Prusament [Internet]. Prusament. 2021 [cited 26 October 2021]. Available at: https://prusament.com/es/la-historia-detras-de-prusament/

Denry I., Kuhn L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials. 2016 Jan 32; (1): 43-53.

Cardona C., Curdes A., Isaacs A. Effects of filament diameter tolerances in fused filament fabrication. IU. J. Undergrad. 2016 May 31; 2 (1): 44-47.

Diab M., Mokari T. Bioinspired Hierarchical Porous Structures for Engineering Advanced Functional Inorganic Materials. Adv Mater. 2018 Oct; 30 (41): e1706349.

Brézulier D., Chaigneau L., Jeanne S., Lebullenger R. The Challenge of 3D Bioprinting of Composite Natural Polymers PLA/Bioglass: Trends and Benefits in Cleft Palate Surgery. Biomedicines. Oct 27; 9 (11): 1553.

Displer T., Fournier N., et al. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Front Bioeng Biotechnol. 2020 Jun 24; 8: 55221.

Wasti S. Adhikari S. Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Front Chem. 2020 May 7; 8: 315.

Abdelhamid M., Pil Pack S. Biomimetic and Bioinspired Silicifications: Recent Advances for Biomaterial Design and Applications. Acta Biomater. 2021 Jan 15;120: 38-56.

Reid A., Buchanan F., et al. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair. J Mater Chem B. 2021 Sep 14; 9 (34): 6728-6737.

Gjerde C., Mustafa K., et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research and Therapy. 2018 Aug 9; 9 (1): 213.

Shafiee A., Atala A. Tissue Engineering: Towards a New Era of Medicine. Reviews in advance. Annu Rev Med.2017 Jan; 68: 29-40.

Perić Kačarević Z., Rider P., et al. An Introduction to bone tissue engineering, The International Journal of Artificial Organs. 2020 Feb; 43 (2): 69-86.

Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018 Mar; 6 (2): 90-9.

César-Juárez A., Olivos-Meza A., Landa-Solís C., Cárdenas-Soria V., Silva-Bermúdez P., Suárez-Ahedo C. et al. Use and application of 3D printing and bioprinting technology in medicine. Rev. Fac. Med. (Mex.). 2018 Dec; 61 ( 6 ): 43-51.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.