Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Estudio de tomografía computarizada de haz cónico de las distancias de los ápices radiculares al canal mandibular en una población peruana
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Cone-beam computed tomography; Mandibular canal; Mandibular nerve; Mandible; Tooth; Mandibular nerve injuries.
Tomografía computarizada de haz cónico; Nervio mandibular; Mandíbula; Diente premolar; Diente molar; Lesiones del nervio mandibular.

Cómo citar

Manrique, P., Agurto, A., & Guerrero, M. E. (2023). Estudio de tomografía computarizada de haz cónico de las distancias de los ápices radiculares al canal mandibular en una población peruana. Odovtos International Journal of Dental Sciences, 25(2), 144–154. https://doi.org/10.15517/ijds.2023.54120

Resumen

El propósito de este estudio fue comparar las distancias promedio desde los ápices radiculares de primeros molares, segundos molares y segundos premolares al canal mandibular según sexo en la población peruana mediante tomografía computarizada de haz cónico (TCHC). Se examinaron 80 tomografías CBCT de pacientes peruanos con edades comprendidas entre los 15 y 80 años. Luego de ubicar el canal mandibular, se realizaron mediciones de las distancias verticales desde el canal mandibular hasta el ápice de los segundos premolares mandibulares, así como de los primeros molares y segundos molares. Para el análisis estadístico se utilizó la prueba t de Student para muestras pareadas y no pareadas con un nivel de significación de p<0,05. En el lado derecho, el segundo molar presentó una distancia media de 3,99mm para hombres y 2,87mm para mujeres; exhibiendo una diferencia significativa (p<0.05). Al comparar bilateralmente, no se encontraron diferencias significativas (p>0.05) entre las distancias desde los ápices de los segundos premolares mandibulares y los primeros y segundos molares al canal mandibular. Sin embargo, para los segundos premolares y segundos molares en el lado izquierdo, los valores fueron más altos con un promedio de 5,52mm y 3,75mm, respectivamente.Las raíces mesiales de los segundos molares estaban más cerca del canal mandibular. Además, las mujeres mostraron distancias más cortas que los hombres.

https://doi.org/10.15517/ijds.2023.54120
PDF (English)
HTML (English)
EPUB (English)

Citas

Singh V. Textbook of Anatomy Head, Neck and Brain Volume III Second Edition. 2nd ed. India: Elsevier; 2014.

Kabak S.L., Zhuravleva N.V., Melnichenko Y.M. Topography of the mandibular nerve in human embryos and fetuses. an histomorphological study. J Oral Res. 2017; 6 (11): 291-8.

Wolf K.T., Brokaw E.J., Bell A., Joy A. Variant mandibular nerves and implications for local anesthesia. Anesth Prog. 2016; 63 (2): 84-90.

Puciło M., Lipski M., Sroczyk-Jaszczyńska M., Puciło A., Nowicka A. The anatomical relationship between the roots of erupted permanent teeth and the mandibular canal: a systematic review. Surg Radiol Anat. 2020; 42 (5): 529-42.

Kabak S.L., Zhuravleva N.V., Melnichenko Y.M., Savrasova N.A. Сross-Sectional Anatomic Study of Direct Positional Relationships Between Mandibular Canal and Roots of Posterior Teeth Using Cone Beam Computed Tomography. J Oral Res. 2018; 7 (8): 292-8.

Libersa P., Savignat M. Neurosensory Disturbances of the Mandibular nerve : A Retrospective Study of Complaints in a 10-Year Period. J Oral Maxillofac Surg. 2007; 1486-9.

Byun S., Kim S., Chung H., Lim H., Hei W., Woo J., et al. Surgical management of damaged mandibular nerve caused by endodontic overfilling of calcium hydroxide paste. Int Endod J. 2015; 1-10.

Yates J., Ali A.B.J. Risk of mandibular nerve injury with coronectomy vs surgical extraction of mandibular third molars- A comparison of two techniques and review of the literature. J Oral Rehabil. 2018; 45: 250-7.

Castro R., Guivarc’h M., Foletti J.M., Catherine J.H., Chossegros C., Guyot L. Endodontic-related mandibular nerve injuries: A review and a therapeutic flow chart. J Stomatol Oral Maxillofac Surg. 2018; 119 (5): 412-8.

Doh R., Shin S., You T.M. Delayed paresthesia of mandibular nerve after dental surgery : case report and related pathophysiology. J Dent Anesth Pain Med. 2018; 18 (3): 177-82.

Tay A., J Z. Clinical characteristics of trigeminal nerve injury referrals to a university centre. Int J Oral Maxillofac Surg. 2007; 36: 922-7.

Ahmad M. The Anatomical Nature of Dental Paresthesia: A Quick Review. Open Dent J. 2018; 12 (1): 155-9.

Pogrel M.A. Damage to the mandibular nerve as the result of root canal therapy. J Am Dent Assoc. 2007; 138 (1): 65-9.

MacDonald D. Cone-beam computed tomography and the dentist. J Investig Clin Dent. 2017; 8 (1): 1-6.

Nasseh I., Al-Rawi W. Cone Beam Computed Tomography. Dent Clin North Am. 2018; 62 (3): 361-91.

García-Sanz V., Bellot-Arcís C., Hernández V., Serrano-Sánchez P., Guarinos J., Paredes-Gallardo V. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study. Sci Rep. 2017; 7 (1): 1-8.

Pagare S., Roy C., Vahanwala S., Gavand K., Waghmare M., Goyal S. Estimation of mandibular nerve proximitytothe root api-ces : A CBVI analysis. Int J Dent Res. 2018; 6 (1): 13.

Srnivasan K., Mohammadi M., Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Polish J Radiol. 2014; 79: 181-93.

Hiremath H., Agarwal R., Hiremath V., Phulambrikar T. Evaluation of proximity of mandibular molars and second premolar to mandibular nerve canal among central Indians: A cone-beam computed tomographic retrospective study. Indian J Dent Res. 2016; 27 (3): 312-6.

Lvovsky A., Bachrach S., Kim H.C., Pawar A., Levinzon O., Ben Itzhak J., et al. Relationship between Root Apices and the Mandibular Canal: A Cone-beam Computed Tomographic Comparison of 3 Populations. J Endod. 2018; 44 (4): 555-8.

Choon O.W., Rahman S.A., Shaari R., Alam M.K. The validation of radiography images of romexis software. Int Med J. 2013; 20 (3): 349-51.

Pääsky E., Suomalainen A., Ventä I. Are women more susceptible than men to iatrogenic mandibular nerve injury in dental implant surgery? Int J Oral Maxillofac Surg. 2022; 51 (2): 251-6.

Marinescu Gava M., Suomalainen A., Vehmas T., Ventä I. Did malpractice claims for failed dental implants decrease after introduction of CBCT in Finland? Clin Oral Investig. 2019; 23 (1): 399-404.

Sedaghatfar M., August M.A., Dodson T.B. Panoramic radiographic findings as predictors of mandibular nerve exposure following third molar extraction. J Oral Maxillofac Surg. 2005; 63 (1): 3-7.

Tilotta-Yasukawa F., Millot S., El Haddioui A., Bravetti P., Gaudy J.F. Labiomandibular paresthesia caused by endodontic treatment: an anatomic and clinical study. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006;102 (4).

Razumova S., Brago A., Howijieh A., Barakat H., Kozlova Y.R.N. Evaluation the Relationship between Mandibular Molar Root Apices and Mandibular Canal among Residents of the Moscow Population using Cone-Beam Computed Tomography Technique. Contemp Clin Dent. 2022; 13 (1): 3-8.

Oliveira A.C.S., Candeiro G.T.M., Pacheco da Costa F.F.N., Gazzaneo I.D., Alves F.R.F., Marques F.V. Distance and Bone Density between the Root Apex and the Mandibular Canal: A Cone-beam Study of 9202 Roots from a Brazilian Population. J Endod. 2019; 45 (5): 538-542.e2.

Pearson A. The early innervation of the developing deciduous teeth. J Anat. 1977;123 (3): 563-77.

Krarup S., Darvann T.A., Larsen P., Marsh J.L., Kreiborg S. Three-dimensional analysis of mandibular growth and tooth eruption. J Anat. 2005; 207 (5): 669-82.

Björnerk A., Skieller V. Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod. 1983; 5 (1): 1-46.

Ahmed A.A., Ahmed R.M., Jamleh A., Spagnuolo G. Morphometric analysis of the mandibular canal, anterior loop, and mental foramen: A cone-beam computed tomography evaluation. Int J Environ Res Public Health. 2021; 18 (7): 1-11.

Simonton J.D., Azevedo B., Schindler W.G., Hargreaves K.M. Age-and Gender-related Differences in the Position of the Mandibular nerve by Using Cone Beam Computed Tomography. J Endod. 2009; 35 (7): 944-9.

Schierz O., Dommel S., Hirsch C., Reissmann D.R. Occlusal tooth wear in the general population of Germany: Effects of age, sex, and location of teeth. J Prosthet Dent. 2014;112 (3): 465-71.

Bicaj T., Pustina T., Ahmedi E., Dula L., Lila Z., Tmava-Dragusha A., et al. The Relation between the Preferred Chewing Side and Occlusal Force Measured by T-Scan III System. Open J Stomatol. 2015; 05 (04): 95-101.

Gershenson A., Nathan H., Luchansky E. Mental foramen and mental nerve: Changes with age. Acta Anat (Basel). 1986; 126 (1): 21-8.

Angel J.S., Mincer H.H., Chaudhry J., Scarbecz M. Cone-beam Computed Tomography for Analyzing Variations in Inferior Alveolar Canal Location in Adults in Relation to Age and Sex. J Forensic Sci. 2011; 56 (1): 216-9.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.