Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Comparación fisicoquímica de cuatro mineral trióxido agregados disponibles comercialmente
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Mineral trioxide aggregate; Endodontics; Bioceramics; Characterization; Grey materials
Mineral trióxido agregado; Endodoncia; Biocerámicos; Caracterización; Materiales grises.

Cómo citar

Montero-Aguilar, M., Vega-Baudrit, J. R., Pereira-Reyes, R., Pozos-Guillén, A., Ulate-Rodríguez, E., & Chavarría-Bolaños, D. (2023). Comparación fisicoquímica de cuatro mineral trióxido agregados disponibles comercialmente. Odovtos International Journal of Dental Sciences, 25(3), 67–81. https://doi.org/10.15517/ijds.2023.54672

Resumen

Comparar la composición fisicoquímica de 4 MTA disponibles comercialmente en América Latina. Se compararon física y químicamente ProRoot MTA (Dentsply, EE. UU.), MTA Angelus (Angelus, Brasil), MTA Flow (Ultradent, EE. UU.) y MTA Viarden (Viarden, México). Se obtuvieron imágenes de microscopía electrónica de barrido (SEM) del polvo de MTA y de las presentaciones preparadas. Los análisis de espectroscopía de dispersión de energía de rayos X (EDS) se realizaron por triplicado para calcular la proporción de masa de calcio (Ca), silicio (Si), la proporción Ca/Si entre las 4 marcas. Se realizaron análisis termogravimétricos (TGA) (50ºC-1000ºC), y se calcularon las pérdidas de masa y los puntos de inflexión para cada material. Las diferencias estadísticas para el contenido de Ca y Si se determinaron mediante ANOVA (p<0,05). Los análisis SEM mostraron diferencias evidentes en la apariencia tanto del polvo como las preparaciones de los MTA, entre las diferentes marcas. MTA Angelus mostró prismas cúbicos no observados en las otras 3 marcas. ProRoot MTA y MTA Flow mostraron estructuras homogéneas similares. MTA Viarden fue el menos homogéneo, con estructuras aleatorias (>15um). Al comparar las proporciones de masa de Ca y Si entre las 4 muestras de polvo, MTA Viarden mostró proporciones significativamente más bajas de ambos elementos en comparación con las otras marcas (p<0,005). El análisis TGA mostró un comportamiento similar para ProRoot MTA, MTA Angelus y MTA Flow, con menos del 2 % de pérdida de masa al alcanzar los 1000 °C de temperatura. El MTA Viarden mostró una pérdida de masa de 9,94% antes de los 700 °C, indicando la presencia de diferentes contenidos sensibles a la degradación por temperatura. Los MTA analizados demostraron diferencias significativas en su composición química y características físicas. Los clínicos deben ser conscientes de las diferencias entre las diferentes marcas de un mismo material, y futuras investigaciones deben enfocarse en las implicaciones clínicas de estas diferencias.

https://doi.org/10.15517/ijds.2023.54672
PDF (English)
HTML (English)
EPUB (English)

Citas

Montero-Aguilar M. Gray material in dentistry: the Latin America paradox. Odovtos-Int J Dent Sc 2018; 20: 9.

Torabinejad M., Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999; 25: 197-206.

Parirokh M., Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod 2010; 36: 16-27.

Torabinejad M., Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod 2010; 36: 190-202.

Parirokh M., Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36: 400-13.

Ha W.N., Nicholson T., Kahler B., Walsh L.J. Mineral Trioxide Aggregate-A Review of Properties and Testing Methodologies. Materials (Basel) 2017; 10: 1-18.

Gonçalves J.L., Viapiana R., Saraiva Miranda C.E., Borges A.H., da Cruz Filho A.M. Evaluation of physico-chemical properties of Portland cements and MTA. Braz Oral Res 2010; 24: 277-83.

Tawil P.Z., Duggan D.J., Galicia J.C. MTA: A clinical review. Compend Contin Educ Dent. 2015; 36: 247-64.

Mondelli J.A.S., Hoshino R.A., Weckwerth P.H., Cerri P.S., Leonardo R.T., Guerreiro-Tanomaru J.M., Tanomaru-Filho M., da Silva G.F. Biocompatibility of Mineral Trioxide Aggregate Flow and Biodentine. Int Endod J 2019; 52: 193-200.

Oliveira L.V., da Silva G.R., Souza G.L., Magalhães T.E.A., G.L.R. Barbosa, Turrioni A.P., Moura C.C.G. A Laboratory Evaluation of Cell Viability, Radiopacity and Tooth Discoloration Induced by Regenerative Endodontic Materials. Int Endod J 2020; 53: 1140-42.

Gandolfi M.G., Perut F., Ciapetti G., Mongiorgi R., Prati C. New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response. J Endod 2008; 34: 39-44.

Al-Rabeah E., Perinpanayagam H., MacFarland D. Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 2006; 32: 872-5.

Perinpanayagam H. Cellular response to mineral trioxide aggregate root-end filling materials. J Can Dent Assoc 2009; 75: 369-72.

Tomás-Catalá C.J., Collado-González M., García-Bernal D., Oñate-Sánchez R.E., Forner L., Llena C., Lozano A., Castelo-Baz P., Moraleda J.M., Rodríguez-Lozano F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017; 50 Suppl 2: e63-e72.

Ahmed H.M., Luddin N., Kannan T.P., Mokhtar K.I., Ahmad A. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations. J Endod 2014; 40: 1517-23.

Monteiro Bramante C., Demarchi A.C., de Moraes I.G., Bernadineli N., Garcia R.B., Spångberg L.S., Duarte M.A. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 909-13.

De-Deus G., de Souza M.C., Sergio Fidel R.A., Fidel S.R., de Campos R.C., Luna A.S. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J Endod 2009; 35: 887-90.

Komabayashi T., Spångberg L.S. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod 2008; 34: 94-8.

Islam I., Chng H.K., Yap A.U. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 2006; 39: 220-5.

Dammaschke T., Gerth H.U., Züchner H., Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005; 21: 731-8.

Gandolfi M.G., Van Landuyt K., Taddei P., Modena E., Van Meerbeek B., Prati C. Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod 2010; 36: 851-7.

Almeida A., Sichieri E.P. Thermogravimetric analyses and mineralogical study of polymer modified mortar with silica fume. Mat Res 2006; 9: 321-26.

Voicu G., Popa A.M., Badanoiu A.I., Iordache F. Influence of thermal treatment conditions on the properties of dental silicate cements. Molecules 2016; 21: 233.

Yang H., Che Y. Effects of nano CaCO3/limestone composite particle on the hydration products of cement materials. Advan Mat Scien Eng 2018; 2018: 1-8.

Seo J.H., Amr I.T., Park S.M., Bamagain R.A., Fadhel B.A., Kim G.M., Hunaidy A.S., Lee HK. CO2 uptake of carbonation cured with ground volcanic ash. Materials 2018; 11: 1-13.

de Weerdt K., Haha B.M., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B. Hydration mechanisms of ternary portland cements containing limestone powder and fly ash. Cem Concr Res 2011; 41: 279-91.

Courard L., Herfort D., Villagran Z. Limestone Powder. IN: Properties of fresh and hardened concrete containing supplementary cementitious materials. Springer Int Pub; 2018: 123-151.

Camilleri J. Characterization of hydration products of MTA. Int Endod J 2008; 41: 408-17

Camilleri J., Sorrentino F., Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mat 2013; 29: 580-93.

Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007; 40: 462-70.

Khalil I., Naaman A., Camilleri J. Properties of tricalcium silicate sealers. J Endod 2016; 42: 1529-35.

Marciano M.A., Camilleri J., Lucateli R., Lucateli R.L., Costa R.M., Matsumoto M.A., Hungaro-Duarte M.A. Physical, chemical and biological properties of white MTA with additions of AlF3. Clin Oral Invest 2019; 23: 33-41.

Belio-Reyes I.A., Bucio L., Cruz-Chavez E. Phase composition of ProRoot MTA by X-ray powder diffraction. J Endod 2009 35: 875-78.

Chavez-de Souza L., Yadlapati M., Pereira-Lopes H., Silva R., Letra A., Nelson-Elias C. Physico-chemical and biological properties of a New Portland cement based root repair material. Eur Endod J 2018; 3: 38-47.

Song J.S., Mante F.K., Romanow W., Kim S. Chemical analysis of powder and set forms of portland cement, gray Proroot MTA, and gray MTA Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 809-15.

De Oliveira M.G., Braga C., Demarco F.F., Pinheiro A.L.B., Costa A.T., Pozza D.H. Comparative chemical study of MTA and Portland cements. Braz Dent J 2007; 18: 3-7.

Guimaraes B.M., Vivan R.C., Piazza B., Alcalde M.P., Bramante C.M., Hungaro-Duarte M.A. Chemical physical physical porperties and apatite forming ability of Mineral Trioxide Aggregate Flow. J Endod 2017; 43: 1692-96.

De Deus G., Camilleri J., Primus C.M., Hungaro-Duarte M.A., Bramante C.M. Introduction to Mineral Trioxide Aggregate. IN: Mineral Trioxide Aggregate in dentistry. Springer Int Pub; 2014: 1-17.

Zaini N., Van der Meer F., Van Ruitenbeek F., De Smeth B., Amri F., Lievens C. An alternative quality control technique for mineral chemistry analysis of portland cement-grade limestone using shortwave infrared spectroscopy. Remote Sens 2016; 8:1-16.

Badanoui A., Paceagiu, J., Voicu G. Hydration and hardening processes of Portland cements obtained from clinkers mineralized with fluoride and oxides. J Therm Anal Calorim 2011; 103: 879-88.

Boughanmi S., Labidi I., Tiss H., Megriche A. The effect of marl and clay compositions on the Portland cement quality. J Tun Chem Soc 2016; 18: 43-51.

Harrison A.M. Constitution and specification of Portland cement. N: Leas Chemistry of Concrete and Cement. Butterworth-Heinemann Pub; 2019: 87-155.

Bayraktar O.Y. The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in portland cement. Environ Monit Assess 2019; 191: 560.

López-García S., Pecci-Lloret M.R., Guerrero-Gironés J., Pecci-Lloret M.P., Lozano A., Llena C., Rodríguez-Lozano F.J., Forner L. Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer. Materials (Basel) 2019; 12: 3087.

Meena A.H., Arai Y. Environmental geochemistry of technetium. Environ Chem Lett 2017; 15: 241-263.

Chang S.W. Chemical composition and porosity characteristics of various calcium silicate-based endodontic cements. Bioinorg Chem Appl 2018; 2784632 .

Pelepenko L.E., Saavedra F., Antunes T.B.M., Bombarda G.F., Gomes B.P.F.A., Zaia A.A., Camilleri J., Marciano M.A. Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig 2021; 25: 663-72.

Ha W.N., Shakibaie F., Kahler B., Walsh L.J. Deconvolution of the particle size distribution of ProRoot MTA and MTA Angelus. Acta Biomater Odontol Scand 2016; 2: 7-11.

Ha W.N., Bentz D.P., Kahler B., Walsh L.J. D90: The Strongest Contributor to Setting Time in Mineral Trioxide Aggregate and Portland Cement. J Endod 2015; 41: 1146-50.

Kao C.T., Shie M.Y., Huang T.H., Ding S.J. Properties of an accelerated mineral trioxide aggregate-like root-end filling material. J Endod 2009; 35: 239-42.

Khalil I., Naaman A., Camilleri J. Investigation of a novel mechanically mixed mineral trioxide aggregate (MM-MTA(™) ). Int Endod J 2015; 48: 757-67.

Formosa L.M., Mallia B., Camilleri J. Mineral trioxide aggregate with anti-washout gel - properties and microstructure. Dent Mater 2013; 29: 294-306.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.