Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Descripción físico-matemática de la capa inhibida por oxígeno en polímeros dentales nano rellenados
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Polymers; Dental composite; Glycerol; Hardness test; FTIR.
Polímero; Resina compuesta; Glicerol; Prueba de dureza; FTIR.

Cómo citar

Ferreto-Gutiérrez, I., & Hernández-Mata, A. (2023). Descripción físico-matemática de la capa inhibida por oxígeno en polímeros dentales nano rellenados. Odovtos International Journal of Dental Sciences, 26(1), 65–75. https://doi.org/10.15517/ijds.2023.56092

Resumen

La presente investigación evalúa la presencia de la capa inhibida por oxígeno OIL en la última superficie fotocurada de una resina compuesta de uso odontológica que fue protegida con una capa de glicerina. Esta evaluación se hizo a partir de métodos físicos y matemáticos. Se fabricaron discos polimerizados para evaluar la microdureza Vickers (VHN) y pre y post polimerizados para el cálculo de tasas C-O/C-H por medio de Espectroscopía Infrarroja Transformada de Fourier (FTIR) (n=10) usando dos tipos de glicerina, una de uso médico (MG) y otra de uso dental (DG). La dureza superficial disminuyó de MG a DG a CO y el aumento de tasas C-O/C-H disminuyó en ese mismo orden (p<0,05). Las muestras protegidas con capas de glicerina médica y odontológica son más duras y presentan menos cantidad tasas de enlaces C-O/C-H que el grupo control.

https://doi.org/10.15517/ijds.2023.56092
PDF (English)
HTML (English)
EPUB (English)

Citas

Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Progress in polymer science. 2001; 26 (4): 605-665.

Finger W.J., Lee K.S., Podszun W. Monomers with low oxygen inhibition as enamel/dentin adhesives. Dental Materials. 1996; 12: 256-61.

Byoung I. Suh. Principles of Adhesion Dentistry, a theoretical and clinical guide for dentists. AEGIS Communications. 2013: 98-152. ISBN: 0979864658,9780979864650.

Byoung I. Suh. Oxygen-Inhibited Layer in Adhesion Dentistry. Journal of Esthetic and Restorative Dentistry. 2004; 16: 316-23.

Magne, Pascal, NIELSEN, Brik. Interactions between impression materials and immediate dentin sealing. The Journal of prosthetic dentistry. 2009; 102 (5): 298-305.

Park H., Lee I. Effect of glycerin on the surface hardness of composites after curing. Journal of Korean Academy of Conservative Dentistry. 2011; 36 (6): 483-9.

Panchal A., Asthana G. Oxygen inhibition layer: A dilemma to be solved. Journal of Conservative Dentistry. 2020 May 1; 23 (3): 254-8.

Rueggeberg F.A., Margeson D.H. The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res. 1990; 69 (10): 1652-8.

Shawkat E., Shortall A., Addison O., Palin W. Oxygen inhibition and incremental layer bond strengths of resin composites. Dental Materials. 2009 Nov; 25 (11): 1338-46.

Mann, Navjot Singh, et al. Efficacy comparison of various oxygen lnhibition layer (OIL) minimizing agents on composite resin by analysis of two different physical properties: An in vitro study. International journal of health sciences. 2022; 6 (1): 866-871.

Chaharom M.E.E., Bahari M., Safyari L., Safarvand H., Shafaei H., Navimipour E.J., et al. Effect of preheating on the cytotoxicity of bulk-fill composite resins. J Dent Res Dent Clin Dent Prospects. 2020; 14 (1): 19-25.

Silverstein R., Webster F., Kiemle D. Spectrometric identification of organic compounds. 7th ed. Wiley, editor. 2005.

Kim J.S., Choi Y.H., Cho B.H., Son H.H., Lee I.B., Um C.M., et al. Effect of light-cure time of adhesive resin on the thickness of the oxygen-inhibited layer and the microtensile bond strength to dentin. J Biomed Mater Res B Appl Biomater. 2006 Jul; 78 (1): 115-23.

Xia W., Cook W. Exotherm control in the thermal polymerization of nona-ethylene glycol dimethacrylate (NEGDM) using a dual radical initiator system. Polymer (Guilford) [Internet]. 2003; 44 (1): 79-88. Available from: www.elsevier.com/locate/polymer

Dall’oca S., Papacchini F., Goracci C., Cury A.H., Byoung I. Suh., Tay F.R., et al. Effect of oxygen inhibition on composite repair strength over time. J Biomed Mater Res B Appl Biomater. 2007 May; 81 (2): 493-8.

Ferracane J. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials. 1985; 1: 11-4.

Prejmerean C., Moldovan M., Gabriel F., Popescu V. Composition Versus Physico-mechanical Properties of Some Dental Experimental Polymers Redox isomerism in bioinorganic centers View project Cuspal deformation during Composite Direct Restoration View project. Material Plastice [Internet]. 2011; 48 (1): 27-32. Available from: http://www.revmaterialeplastice.ro

Scotti N., Venturello A., Borga F.A.C., Pasqualini D., Paolino D.S., Geobaldo F., et al. Post-curing conversion kinetics as functions of the irradiation time and increment thickness. Journal of Applied Oral Science. 2013; 21 (2): 190-5.

Knobloch L.A., Kerby R.E., Clelland N., Lee J. Hardness and degree of conversion of posterior packable composites. Oper Dent [Internet]. 2004; 29 (6): 642-9. Available from: http://meridian.allenpress.com/operative-dentistry/article-pdf/29/6/1/1819346/1559-2863-29-6-1.pdf

Abed Y.A., Sabry H.A., Alrobeigy N.A. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dental Journal. 2015 Jun; 12 (2): 71-80.

Dewald, J. P.; Ferracane, J. L. A comparison of four modes of evaluating depth of cure of light-activated composites. Journal of dental research. 1987; 66 (3): 727-730.

Robertson L., Phaneuf M., Haimeur A., Pesun I., França R. Degree of conversion and oxygen-inhibited layer effect of three dental adhesives. Dent J (Basel). 2016; 4 (37): 1-8.

Gauthier Marc A., Ellis Thomas H., Stangel Ivan. Confocal Raman micro-spectroscopic study of monomer conversion of dental resins. J Dent Res. 2002; 81: 725-9.

Marovic D., Panduric V., Tarle Z., Ristic M., Sariri K., Demoli N., et al. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct. 2013 Jul 24; 1044: 299-302.

Shin W.S., Li X.F., Schwartz B., Wunder S.L., Baran G.R. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater. 1993; 9: 317-24.

Borges M.G., Silva G.R., Neves F.T., Soares C.J., Faria-E-silva A.L., Carvalho R.F., et al. Oxygen inhibition of surface composites and its correlation with degree of conversion and color stability. Braz Dent J. 2021 Jan 1; 31 (1): 91-7.

Mobarak E., Elsayad I., Ibrahim M., El-Badrawy W. Effect of LED light-curing on the relative hardness of tooth-colored restorative materials. Oper Dent. 2009 Jan; 34 (1): 65-71.

Marigo L., Nocca G., Fiorenzano G., Callà C., Castagnola R., Cordaro M., et al. Influences of Different Air-Inhibition Coatings on Monomer Release, Microhardness, and Color Stability of Two Composite Materials. Biomed Res Int. 2019; 2019. PMID: 31211136 PMCID: PMC6532316 DOI: 10.1155/2019/4240264

Askeland D., Pradeep P., Wright W. The Science and Engineering of Materials. sixth. 2011.

Strnad G., Kovacs M., Andras E., Beresescu L. Effect of Curing, Finishing and Polishing Techniques on Microhardness of Composite Restorative Materials. Procedia Technology. 2015; 19: 233-8.

Maghaireh G.A., Price R.B., Abdo N., Taha N.A., Alzraikat H. Effect of thickness on light transmission and Vickers hardness of five bulk-fill resin-based composites using polywave and single-peak light-emitting diode curing lights. Oper Dent. 2019 Jan 1; 44 (1): 96-107.

Topaloglu-Ak A., Çayırgan D., Uslu M. Evaluation of Surface Roughness of Composite, Compomer, and Carbomer After Curing Through Mylar Strip and Glycerin: A Comparative Study. J Adv Oral Res. 2020 May;11 (1): 12-5.

Ultrani Tangkudung M., Chandra Trilaksana A., Pendidikan Dokter Gigi Spesialis Konservasi Gigi P. Glycerin for resin compo¬site restoration: Literature Review. Makassar Dent J. 2019; 8 (3): 169-173.34.

Lim J.H., Lee S.Y., Gu H., Jin G., Kim J.E. Evaluating oxygen shielding effect using glycerin or vacuum with varying temperature on 3D printed photopolymer in post-polymerization. J Mech Behav Biomed Mater. 2022 Jun 1; 130: 1-11.

Ishige T., Honda K., Shimizu S. Whole organism biocatalysts. Curr Opin Chem Biol. 2005; 9 (2): 174-80.

Maghaireh G.A., Price R.B., Abdo N., Taha N.A., Alzraikat H. Effect of thickness on light transmission and Vickers hardness of five bulk-fill resin-based composites using polywave and single-peak light-emitting diode curing lights. Oper Dent. 2019 Jan 1; 44 (1): 96-107.

Abed Y.A., Sabry H.A., Alrobeigy N.A. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dental Journal. 2015 Jun; 12 (2): 71-80.

Marigo L., Nocca G., Fiorenzano G., Callà C., Castagnola R., Cordaro M., et al. Influences of Different Air-Inhibition Coatings on Monomer Release, Microhardness, and Color Stability of Two Composite Materials. Biomed Res Int. 2019; 2019: 1-8. PMID: 31211136 PMCID: PMC6532316 DOI: 10.1155/2019/4240264

Topaloglu-Ak A., Çayırgan D., Uslu M. Evaluation of Surface Roughness of Composite, Compomer, and Carbomer After Curing Through Mylar Strip and Glycerin: A Comparative Study. J Adv Oral Res. 2020 May; 11 (1): 12-5.

Mustikaningsih Handayani T. Effects of glycerin application on the hardness of nanofilled composite immersed in tamarind soft drink. Dent J. 2019; 52 (2): 95-9.

Park H.H., Lee I.B. Effect of glycerin on the surface hardness of composites after curing. Journal of Korean Academy of Conservative Dentistry. 2011; 36 (6): 483.

Strnad G., Kovacs M., Andras E., Beresescu L. Effect of Curing, Finishing and Polishing Techniques on Microhardness of Composite Restorative Materials. Procedia Technology. 2015; 19: 233-8.

Marovic D., Panduric V., Tarle Z., Ristic M., Sariri K., Demoli N., et al. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct. 2013 Jul 24; 1044: 299-302.

Peutzfeldt A. Resin composites in dentistry: monomer systems. Eur J Oral Sci. 1997; 105: 97-116.

Durner J., Obermaier J., Draenert M., Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dental Materials. 2012 Nov 1; 28: 1146-53.

Byoung In S. Oxygen- Inhibited Layer in Adhesion Dentistry. Journal Of Esthetic and Restorative Dentistry. 2004; 16: 316-23.

Ferracane, Jack L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials. 1985; 1 (1): 11-14.

Knobloch L.A., Kerby R.E., Clelland N., Lee J. Hardness and degree of conversion of posterior packable composites. Oper Dent [Internet]. 2004; 29 (6): 642-9. Available from: http://meridian.allenpress.com/operative-dentistry/article-pdf/29/6/1/1819346/1559-2863-29-6-1.pdf

Dewald J.P., Ferracane’ J.L. A Comparison of Four Modes of Evaluating Depth of Cure of Light-activated Composites. J Dent Res. 1987; 66 (3): 727-30.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.