Resumen
Las células troncales dentales (CTDs) son células multipotentes con gran capacidad de proliferación y diferenciación multilinaje. Pocos estudios han comparado las características celulares y el potencial de diferenciación adipogénica de las CTDs derivadas de tejidos de un mismo individuo. El objetivo de este trabajo fue evaluar las diferencias en las características de crecimiento, la expresión de marcadores específicos de celulas troncales mesenquimales (CTMs) y el perfil de proteínas en respuesta a la diferenciación adipogénica, de células de pulpa dental y ligamento periodontal obtenidas de un mismo donante. Las células dentales se aislaron a partir del tercer molar de un único donante mediante el método de explante. Para obtener la curva de proliferación de las células se evaluó mediante análisis con azul tripano. Tras cultivar las células en medio adipogénico, se controlaron los cambios morfológicos mediante tinción con rojo O oleoso, así como los marcadores adipogénicos PPARγ y adiponectina mediante RT-qPCR. Por último, se realizó una electroforesis bidimensional de las proteínas aisladas de estas células para analizar el perfil proteómico. Los dos tipos de CTDs comparten características celulares similares; sin embargo, su capacidad de diferenciación adipogénica es diferente. Basándonos en los resultados del perfil proteico, identificamos cinco proteínas expresadas diferencialmente entre ambos tipos de células troncales. Los resultados mostraron que las células troncales de la pulpa dental y del ligamento periodontal de un mismo donante tienen características celulares similares pero una respuesta diferente a la adipogénesis, lo que explicaría las diferencias en la expresión de sus proteinas.
Citas
Rodas-Junco B.A., Canul-Chan M., Rojas-Herrera R.A., De-la-Peña C., Nic-Can G.I. Stem cells from dental pulp: what epigenetics can do with your tooth. Front Physiol. 2017; 8: 999.
Bansal R., Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med. 2015; 6 (1): 29.
Sarjeant K., Stephens J.M. Adipogenesis. Cold Spring Harb Perspect Biol. 2012; 4 (9): a008417.
Lee H., Lee B., Park S., Kim C. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics. 2006; 6 (4): 1223-9.
Zhuang W., Ge X., Yang S., Huang M., Zhuang W., Chen P., et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells. 2015; 33 (6): 1985-97.
Khurshid Z., Zohaib S., Najeeb S., Zafar M.S., Rehman R., Rehman I.U. Advances of proteomic sciences in dentistry. Int J Mol Sci. 2016;17 (5): 728.
Li L., Zuo Y., Zou Q., Yang B., Lin L., Li J., et al. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO–PU Composite Scaffold for Bone Regeneration. ACS Appl Mater Interfaces [Internet]. 2015;151002103911000. Available from: http://pubs.acs.org/doi/10.1021/acsami.5b07327
DeLany J.P., Floyd Z.E., Zvonic S., Smith A., Gravois A., Reiners E., et al. Proteomic Analysis of Primary Cultures of Human Adipose-derived Stem Cells: Modulation by Adipogenesis* S. Mol Cell Proteomics. 2005; 4 (6): 731-40.
Lo T., Tsai C.-F, Shih Y.-R.V., Wang Y.-T., Lu S.-C., Sung T.-Y., et al. Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation. J Proteome Res. 2012; 11 (2): 586-98.
Jeong J.A., Ko K., Park H.S., Lee J., Jang C., Jeon C., et al. Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis. Proteomics. 2007; 7 (22): 4181-91.
Pelaez-Garcia A., Barderas R., Batlle R., Vinas-Castells R., Bartolome R.A., Torres S., et al. A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics. 2015; 14 (2): 303-15.
Guerrero-Jiménez M., Nic-Can G.I., Castro-Linares N., Aguilar-Ayala F.J., Canul-Chan M., Rojas-Herrera R.A., et al. In vitro histomorphometric comparison of dental pulp tissue in different teeth. PeerJ. 2019; 7: e8212.
Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977; 83 (2): 346-56.
Zuk P.A. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell. 2010; 21 (11): 1783-7.
Zhang X., Liu J., Liang X., Chen J., Hong J., Li L., et al. History and progression of Fat cadherins in health and disease. Onco Targets Ther. 2016; 9: 7337.
Chakrabarty R.P., Chandel N.S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021; 28 (3): 394-408.
Zhou D., Gan L., Peng Y., Zhou Y., Zhou X., Wan M., et al. Epigenetic regulation of dental pulp stem cell fate. Stem Cells Int. 2020; 2020: 8876265
Li B., Ouchi T., Cao Y., Zhao Z., Men Y. Dental-derived mesenchymal stem cells: state of the art. Front Cell Dev Biol. 2021; 9: 654559.
Drela K., Stanaszek L., Nowakowski A., Kuczynska Z, Lukomska B. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int. 2019; 6: 7012692
Mercado-Rubio M.D., Pérez-Argueta E., Zepeda-Pedreguera A., Aguilar-Ayala F.J., Peñaloza-Cuevas R., Kú-González A., et al. Similar Features, Different Behaviors: A Comparative In Vitro Study of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. J Pers Med. 2021; 11 (8): 738.
Kotova A.V., Lobov A.A., Dombrovskaya J.A., Sannikova V.Y., Ryumina N.A., Klausen P., et al. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines. 2021; 9 (11): 1606.
Navabazam A.R., Sadeghian Nodoshan F., Sheikhha M.H., Miresmaeili S.M., Soleimani M., Fesahat F. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Iran J Reprod Med. 2013 Mar; 11 (3): 235-42.
Frank D., Cser A., Kolarovszki B., Farkas N., Miseta A., Nagy T. Mechanical stress alters protein O-GlcNAc in human periodontal ligament cells. J Cell Mol Med. 2019; 23 (9): 6251-9.
Chukkapalli S.S., Lele T.P. Periodontal cell mechanotransduction. Open Biol. 2018; 8 (9): 180053.
Trubiani O., Zalzal S.F., Paganelli R., Marchisio M., Giancola R., Pizzicannella J., et al. Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol. 2010; 225 (1): 123-31.
Tatullo M., Marrelli M., Shakesheff K.M., White L.J. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015; 9 (11): 1205-16.
Silvério K.G., Rodrigues T.L., Coletta R. Dela, Benevides L., Da Silva J.S., Casati M.Z., et al. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010; 81 (8): 1207-15.
Jang J.Y., Park S.H., Park J.H., Lee B.K., Yun J.H., Lee B., et al. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Macromol Biosci. 2016; 1158-69.
Miletić M., Mojsilović S., Okić-Đorđević I., Kukolj T., Jauković A., Santibanez J., et al. Mesenchymal stem cells isolated from human periodontal ligament. Arch Biol Sci. 2014; 66 (1): 261-71.
Piva E., Tarlé S.A., Nör J.E., Zou D., Hatfield E., Guinn T., et al. Dental pulp tissue regeneration using dental pulp stem cells isolated and expanded in human serum. J Endod. 2017; 43 (4): 568-74.
Diomede F., Rajan T.S., Gatta V., D’Aurora M., Merciaro I., Marchisio M., et al. Stemness maintenance properties in human oral stem cells after long-term passage. Stem Cells Int. 2017: 5651287.
Duff S.E., Li C., Garland J.M., Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 2003; 17 (9): 984-92.
Saghiri M.A., Asatourian A., Sorenson C.M., Sheibani N. Mice dental pulp and periodontal ligament endothelial cells exhibit different proangiogenic properties. Tissue Cell. 2018; 50: 31-6.
Tsai C.-C., Su P.-F., Huang Y.-F., Yew T.-L., Hung S.-C. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell. 2012; 47 (2): 169-82.
Kawanabe N., Murata S., Murakami K., Ishihara Y., Hayano S., Kurosaka H., et al. Isolation of multipotent stem cells in human periodontal ligament using stage-specific embryonic antigen-4. Differentiation. 2010; 79 (2): 74-83.
Ponnaiyan D., Jegadeesan V. Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. Eur J Dent. 2014; 8 (03): 307-13.
Pierantozzi E., Gava B., Manini I., Roviello F., Marotta G., Chiavarelli M., et al. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev. 2011; 20 (5): 915-23.
Greco S.J., Liu K., Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 2007; 25 (12): 3143-54.
Trivanović D., Jauković A., Popović B., Krstić J., Mojsilović S., Okić-Djordjević I., et al. Mesenchymal stem cells of different origin: comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sci. 2015; 141: 61-73.
Volponi A.A., Gentleman E., Fatscher R., Pang Y.W.Y., Gentleman M.M., Sharpe P.T. Composition of mineral produced by dental mesenchymal stem cells. J Dent Res. 2015; 94 (11): 1568-74.
Okajcekova T., Strnadel J., Pokusa M., Zahumenska R., Janickova M., Halasova E., et al. A comparative in vitro analysis of the osteogenic potential of human dental pulp stem cells using various differentiation conditions. Int J Mol Sci. 2020; 21 (7): 2280.
Korkmaz Y., Imhof T., Kaemmerer P.W., Bloch W., Rink-Notzon S., Moest T., et al. The colocalizations of pulp neural stem cells markers with dentin matrix protein-1, dentin sialoprotein and dentin phosphoprotein in human denticle (pulp stone) lining cells. Ann Anatomy-Anatomischer Anzeiger. 2022; 239: 151815.
James A.W. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013: 684736.
Kolar M.K., Itte V.N., Kingham P.J., Novikov L.N., Wiberg M., Kelk P. The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep. 2017; 7 (1): 1-12.
Monterubbianesi R., Bencun M., Pagella P., Woloszyk A., Orsini G., Mitsiadis T.A. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep. 2019; 9 (1):1-13.
Shen W.-C., Lai Y.-C., Li L.-H., Liao K., Lai H.-C., Kao S.-Y., et al. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun. 2019; 10 (1): 1-13.
Fracaro L., Senegaglia A.C., Herai R.H., Leitolis A., Boldrini-Leite L.M., Rebelatto C.L.K., et al. The expression profile of dental pulp-derived stromal cells supports their limited capacity to differentiate into adipogenic cells. Int J Mol Sci. 2020; 21 (8): 2753.
Xing Y., Zhang Y., Wu X., Zhao B., Ji Y., Xu X. A comprehensive study on donor-matched comparisons of three types of mesenchymal stem cells-containing cells from human dental tissue. J Periodontal Res. 2019; 54 (3): 286-99.
Um S., Choi J., Lee J., Zhang Q., Seo B.M. Effect of leptin on differentiation of human dental stem cells. Oral Dis. 2011; 17 (7): 662-9.
Argaez-Sosa A.A., Rodas-Junco B.A., Carrillo-Cocom L.M., Rojas-Herrera R.A., Coral-Sosa A., Aguilar-Ayala F.J., et al. Higher Expression of DNA (de) methylation-Related Genes Reduces Adipogenicity in Dental Pulp Stem Cells. Front cell Dev Biol. 2022; 10: 791667
Li Y.-D., Lv Z., Zhu W-F. RBBP4 promotes colon cancer malignant progression via regulating Wnt/β-catenin pathway. World J Gastroenterol. 2020; 26 (35): 5328.
Christodoulides C., Lagathu C,. Sethi J.K., Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab. 2009; 20 (1): 16-24.
Prestwich T.C., MacDougald O.A. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol. 2007; 19 (6): 612-7.
De Winter T.J.J., Nusse R. Running against the Wnt: How Wnt/β-catenin suppresses adipogenesis. Front Cell Dev Biol. 2021; 9: 627429.
Shi H., DiRienzo D., Zemel M.B. Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. FASEB J. 2001; 15 (2): 291-3.
Gherardi G., Monticelli H., Rizzuto R., Mammucari C. The mitochondrial Ca2+ uptake and the fine-tuning of aerobic metabolism. Front Physiol. 2020; 11: 554904.
Zhao J., Zhou A., Qi W. The Potential to Fight Obesity with Adipogenesis Modulating Compounds. Int J Mol Sci. 2022; 23 (4): 2299.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2024 CC-BY-NC-SA 4.0