Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Biocompatibilidad de selladores bioactivos Bio-C Sealer vs MTA Repair HP en fibroblastos humanos
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Bio-C® Sealer; MTA HP® repair; Cytotoxic; Genotoxicity; Cements; Tricalcium silicate.
Sellador Bio-C® Sealer; Reparación MTA HP®; Citotóxico; Genotoxicidad; Cementos; Silicato tricálcico.

Cómo citar

Méndez-González, V. M., Martínez-López, J., Pozos-Guillén, A., González-Amaro, A. M., Gutiérrez-Sánchez, M., & Escobar-García, D. M. (2024). Biocompatibilidad de selladores bioactivos Bio-C Sealer vs MTA Repair HP en fibroblastos humanos. Odovtos International Journal of Dental Sciences, 26(2), 91–100. https://doi.org/10.15517/ijds.2024.58908

Resumen

Los cementos bioactivos a base de silicato tricálcico se introdujeron en el mercado para uso en odontología, con una variedad de aplicaciones clínicas. Estos cementos pueden estar en contacto con tejidos como la pulpa dental o el periodonto, en caso de extrusión no intencionada. Por lo tanto, es importante conocer la genotoxicidad y la citoxicidad de estos materiales. El objetivo de este estudio fue evaluar la citotoxicidad y genotoxicidad de los selladores bioactivos Bio-C® Sealer y MTA Repair HP® en fibroblastos humanos. Se prepararon discos de selladores bioactivos Bio-C® Sealer y MTA Repair HP® y se colocaron durante 24h en condiciones de esterilidad. Los discos se colocaron en medio de cultivo a 2,5mg/mL dentro de un mezclador de rodillos SRT6D (Stuart, Reino Unido) a 60rpm durante 24h. Los eluidos obtenidos se incubaron durante 24h con fibroblastos de la línea celular ATCC previamente activados y cultivados al 80% de confluencia. La citotoxicidad se evaluó mediante ensayos Alamar Blue® y LIVE/DEAD; así como el análisis de los ensayos Tunnel y Mitotracker para evaluar la genotoxicidad, utilizando el microscopio confocal láser de barrido. En el ensayo Alamar Blue®, el Sellador Bio-C® presentó una proliferación celular del 87%, mientras que el sellador MTA Repair HP® fue del 72%. Se encontró una diferencia estadísticamente significativa entre el sellador MTA Repair HP® con respecto al control negativo (p=<0.001). En cuanto a las pruebas de genotoxicidad, en el ensayo Tunel, ambos materiales tiñen el núcleo de las células fibroblásticas expuestas a los eluidos, mientras que el ensayo Mitotracker, el sellador MTA Repair HP®, mostró una mayor función mitocondrial que el Bio-C® Sealer. Los selladores a base de silicato de calcio, Bio-C® Sealer y MTA Repair HP® no son citotóxicos y tienen una baja genotoxicidad.

https://doi.org/10.15517/ijds.2024.58908
PDF (English)
HTML (English)
EPUB (English)

Citas

Wang Z. Bioceramic materials in endodontics. Endod Topics 2015; 32 (1): 3-30. https://doi.org/10.1111/etp.12075.

Garcez A.S., Ribeiro M.S., Tegos G.P., Núñez S.C., Jorge A.O.C., Hamblin M.R. Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med 2007; 39 (1): 59-66. doi:10.1002/lsm.20415

Bhat A., Cvach N., Mizuno C., Ahn C., Zhu Q., Primus C., et al. Ion release from prototype surface pre-reacted glass ionomer sealer and EndoSequence BC sealer. Eur Endod J 2021; 6 (1): 122-7. doi:10.14744/eej.2020.50470

Komabayashi T., Colmenar D., Cvach N., Bhat A., Primus C., Imai Y. Comprehensive review of current endodontic sealers. Dent Mater J 2020; 39 (5): 703-20. doi:10.4012/dmj.2019-288

Gasner N.S., Brizuela M. Endodontic materials used to fill root canals. In: StatPearls. StatPearls Publishing 2022.

Orstavik D. Materials used for root canal obturation: technical, biological and clinical testing. Endod Topics 2005; 12 (1): 25-38.

Cintra L.T.A., Benetti F., de Azevedo Queiroz Í.O., de Araújo Lopes J.M., Penha de Oliveira S.H., Sivieri Araújo G., et al. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA. J Endod 2017; 43 (5): 774-8. doi:10.1016/j.joen.2016.12.018

Parirokh M., Torabinejad M. Mineral trioxide aggregate: A comprehensive literature rreview-Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36 (3): 400-13. doi:10.1016/j.joen.2009.09.009

Prati C., Gandolfi M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental Materials 2015; 31 (4): 351-70. doi:10.1016/j.dental.2015.01.004

Zordan-Bronzel C.L., Tanomaru-Filho M., Chávez-Andrade G.M., Torres F.F.E., Abi-Rached G.P.C., Guerreiro-Tanomaru J.M. Calcium Silicate-based experimental sealers: Physicochemical properties evaluation. Mat. Res. 2021; 24 (1). https://doi.org/10.1590/1980-5373-MR-2020-0243

López-García S., Lozano A., Garcíabernal D., Forner L., Llena C., Guerrero-Gironés J., et al. Biological effects of new hydraulic materials on human periodontal ligament stem cells. J Clin Med 2019; 8 (8): 1216. doi:10.3390/jcm8081216

Sultana N., Singh M., Nawal R.R., Chaudhry S., Yadav S., Mohanty S., et al. Evaluation of biocompatibility and osteogenic potential of tricalcium silicate-based cements using human bone marrow-derived mesenchymal stem cells. J Endod 2018; 44 (3): 446-51. doi:10.1016/j.joen.2017.11.016

Alves Silva E.C., Tanomaru-Filho M., da Silva G.F., Delfino M.M., Cerri P.S., Guerreiro-Tanomaru J.M. Biocompatibility and bioactive potential of new calcium silicate-based endodontic sealers: Bio-C sealer and sealer plus BC. J Endod 2020; 46 (10): 1470-7. doi:10.1016/j.joen.2020.07.011

Donnermeyer D., Bürklein S., Dammaschke T., Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology 2019; 107 (4): 421-36. doi:10.1007/s10266-018-0400-3

Meschi N., Patel B., Ruparel N.B. Material Pulp Cells and Tissue Interactions. J Endod 2020; 46 (9): S150-60. doi:10.1016/j.joen.2020.06.031

Rodríguez-Lozano F.J., López-García S., García-Bernal D., Tomás-Catalá C.J., Santos J.M., Llena C., et al. Chemical composition and bioactivity potential of the new Endosequence BC Sealer formulation HiFlow. Int Endod J 2020; 53 (9): 1216-1228. doi:10.1111/iej.13327

Standarization IO for. ISO 10993-1:2009. In: Biological Evaluation of Medical Devices. 2009.

Okamura T., Chen L., Tsumano S., Ikeda C., Komasa S., Tominaga K., et al. Biocompatibility of a high-plasticity, calcium silicate-based, ready-to-use material. Materials 2020; 13 (21): 4770. doi:10.3390/ma13214770

Bonnier F., Keating M.E., Wróbel T.P., Majzner K., Baranska M., Garcia-Munoz A., et al. Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol in Vitro 2015; 29 (1): 24-131. doi: 10.1016/j.tiv.2014.09.014

Longhin E.M., El Yamani N., Rundén-Pran E., Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol 2022; 4. doi:10.3389/ftox.2022.981701

McGaw L.J., Elgorashi E.E., Eloff J.N. Cytotoxicity of African Medicinal Plants Against Normal Animal and Human Cells. In: Toxicological Survey of African Medicinal Plants Elsevier; 2014. p. 181-233.

Klein-Junior C.A., Zimmer R., Dobler T., Oliveira V., Marinowic D.R., Özkömür A., et al. Cytotoxicity assessment of bio-c repair Íon: A new calcium silicate-based cement. J Dent Res Dent Clin Dent Prospects 2021; 15 (3): 152-6. doi:10.34172/joddd.2021.026

Abbaszadeh Z., Çeşmeli S., Biray Avcı Ç. Crucial players in glycolysis: Cancer progress. Gene 2020; 726: 144158. doi:10.1016/j.gene.2019.144158

Guimarães B.M., Prati C., Duarte M.A.H., Bramante C.M., Gandolfi M.G. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA vitalcem. Journal of Applied Oral Science 2018; 26. doi:10.1590/1678-7757-2017-0115

Gandolfi M.G., Siboni F., Botero T., Bossù M., Riccitiello F., Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: Biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater 2015; 13 (1): 43-60. doi:10.5301/jabfm.5000201

Li X., Yoshihara K., De Munck J., Cokic S., Pongprueksa P., Putzeys E., et al. Modified tricalcium silicate cement formulations with added zirconium oxide. Clin Oral Investig 2017; 21 (3): 895-905. doi:10.1007/s00784-016-1843-y

Cardanho-Ramos C., Morais V.A. Mitochondrial biogenesis in neurons: How and where. Int J Mol Sci 2021; 22 (23): 13059. doi:10.3390/ijms222313059

Vergaças J.H.N., de Lima C.O., Barbosa A.F.A., Vieira V.T.L., dos Santos Antunes H., da Silva E.J.N.L. Marginal gaps and voids of three root-end filling materials: A microcomputed tomographic study. Microsc Res Tech 2022; 85 (2): 617-622. doi:10.1002/jemt.23935

Madurantakam P. Which is the superior retrograde filling material? We don’t know! Evid Based Dent 2022; 23 (2): 54-5. doi:10.1038/s41432-022-0237-z

dos Santos Costa F.M., Fernandes M.H., Batistuzzo de Medeiros S.R. Genotoxicity of root canal sealers: a literature review. Clin Oral Investig 2020; 24 (10): 3347-62. doi:10.1007/s00784-020-03478-z

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.