Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Desarrollo, caracterización y análisis de biocompatibilidad de un andamio de colágeno-hidroxiapatita para la regeneración ósea guiada
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Biocollagen; Guided bone regeneration; Hydroxyapatite; Periodontitis; Quality of life
Biocolágeno; Regeneración ósea guiada; Hidroxiapatita; Periodontitis; Calidad de vida.

Cómo citar

Shankar, P., Arumugam, P., & Kannan, S. (2024). Desarrollo, caracterización y análisis de biocompatibilidad de un andamio de colágeno-hidroxiapatita para la regeneración ósea guiada. Odovtos International Journal of Dental Sciences, 26(3), 161–174. https://doi.org/10.15517/ijds.2024.59612

Resumen

La regeneración ósea guiada (GBR) es el tratamiento de elección para mejorar el volumen óseo horizontal y vertical mediante injertos óseos. Las membranas GBR funcionan según el principio de prevenir la migración epitelial hacia el espacio del defecto. La hidroxiapatita se ha utilizado habitualmente como injerto óseo para defectos infraóseos. El estudio se realizó en el Departamento de Biomateriales del Saveetha Dental College. Se preparó un scaffold o andamio, el cual se caracterizó mediante microscopio electrónico de barrido (SEM), análisis de rayos X de dispersión de energía (EDAX), radiación infrarroja por transformada de Fourier (FTIR) y análisis confocal. El andamio desarrollado reveló propiedades propicias para la unión celular. Los análisis EDAX y FTIR mostraron el desarrollo exitoso de la membrana de colágeno-gelatina-hidroxiapatita. El cultivo celular y el análisis confocal revelaron una excelente biocompatibilidad con una capa homogénea de células viables. El andamio  desarrollado es una membrana biogénica con un potencial de biomineralización relevante que puede utilizarse para aplicaciones GBR.

https://doi.org/10.15517/ijds.2024.59612
PDF (English)
HTML (English)
EPUB (English)

Citas

Prichard J.F. The etiology, diagnosis and treatment of the intrabony defect. J Periodontol. 1967; 38 (6): 455-465.

Le Thieu M.K., Mauland E.K., Verket A. Satisfaction and preferences among patients with both implant-supported single crown and tooth-supported fixed dental prosthesis: A pilot study. Acta Odontol Scand. 2023; 45 (3): 56-58

Benic G.I., Hämmerle C.H.F. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000. 2014; 66 (1): 13-40.

Moses O., Pitaru S., Artzi Z, Nemcovsky CE. Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin Oral Implants Res. 2005; 16 (2): 210-235.

Schwarz F., Herten M., Ferrari D., Wieland M., Schmitz L., Engelhardt E., Becker J. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): An immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007; 36 (12): 1198-206.

Owens K.W., Yukna R.A. Collagen membrane resorption in dogs: A comparative study. Implant Dent. 2001; 10 (1): 49.

Zhao S., Pinholt E.M., Madsen J.E., Donath K. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. J Craniomaxillofac Surg. 2000; 28 (2): 116-22.

Dewi A.H., Ana I.D. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon. 2018; 4 (10): 78-80.

Bergese P., Hamad-Schifferli K. Nanomaterial interfaces in biology: Methods and protocols. Humana. 2016; 45 (2): 87-93

Radin S.R., Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994; 28 (11): 1303-1309.

El-Ghannam A.R. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004; 69 (3): 490-501.

Bayani M., Torabi S., Shahnaz A., Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. Biotechnol Biotechnol Equip. 2017; 23 (8): 732-745.

Buser D., Dula K., Belser UC., Hirt HP., Berthold H. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995; 15 (1): 10-29.

Kim Y.K., Ku J.K. Guided bone regeneration. J Korean Assoc Oral Maxillofac Surg. 2020; 46 (5): 361-366.

Sam G., Pillai B.R.M. Evolution of barrier membranes in periodontal regeneration-“Are the third generation membranes really here?” J Clin Diagn Res. 2014; 8 (12): 14-7.

Kim J., Lee C.M., Moon S.Y., Jeong Y.I., Kim C.S., Lee S.Y. Biomedical membrane of fish collagen/gellan gum containing bone graft materials. Materials. 2022; 15 (8): 45-49.

Mathew-Steiner S.S., Roy S., Sen C.K. Collagen in wound healing. Bioengineering (Basel). 2021; 8 (5): 67-70.

Binlateh T., Thammanichanon P., Rittipakorn P., Thinsathid N., Jitprasertwong P. Collagen-based biomaterials in periodontal regeneration: current applications and future perspectives of plant-based collagen. Biomimetics. 2022; 7 (2): 35-40.

Karamanos N.K., Theocharis A.D., Piperigkou Z., Manou D., Passi A., Skandalis S.S., et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021; 288 (24): 6850-912.

Buehler M.J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA. 2006; 103 (33): 12285-12290.

Lukin I., Erezuma I., Maeso L., Zarate J., Desimone MF., Al-Tel TH, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022; 14 (6): 43-47.

Capati M.L.F., Nakazono A., Yamamoto K., Sugimoto K., Yanagiguchi., Yamada S., et al. Fish collagen promotes the expression of genes related to osteoblastic activity. Int J Polym Sci. 2016; 35 (4): 65-69.

Loiselle A.E., Wei L., Faryad M., Paul E.M., Lewis G.S., Gao J., et al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng Part A. 2013; 19 (15): 1704-1709.

Abdelaziz D., Hefnawy A., Al-Wakeel E., El-Fallal A., El-Sherbiny I.M. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2020; 28: 51-62.

Yang F., Both S.K., Yang X., Walboomers XF., Jansen JA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 2009; 5 (9): 3295-3304.

Behring J., Junker R., Walboomers X.F., Chessnut B., Jansen J.A. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008; 96 (1): 1-11.

Sayed M.E., Mugri M.H., Almasri M.A., Al-Ahmari M.M., Bhandi S., Madapusi T.B., et al. Role of stem cells in augmenting dental implant osseointegration: A systematic review. Coat World. 2021; 11 (9): 1035.

Caballé-Serrano J., Munar-Frau A., Delgado L., Pérez R., Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater. 2019; 97: 13-20.

Kim J.Y., Park J.B. Various coated barrier membranes for better guided bone regeneration: A review. Coat World. 2022; 12 (8): 1059-1060.

Chu C., Deng J., Man Y., Qu Y. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Mater Sci Eng C Mater Biol Appl. 2017; 78: 258-264.

Higuchi J., Fortunato G., Woźniak B., Chodara A., Domaschke S., Męczyńska-Wielgosz S., et al. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials. 2019; 9 (11): 1552-1559.

Gavinho S.R., Pádua A.S., Sá-Nogueira I., Silva J.C., Borges J.P., Costa L.C., et al. Fabrication, structural and biological characterization of zinc-containing bioactive glasses and their use in membranes for guided bone regeneration. Materials. 2023; 16 (3): 1625-1630.

Comentarios

Derechos de autor 2024 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.