Resumen
El propósito de este estudio fue evaluar la respuesta del tejido blando periimplantario mediante la evaluación de los niveles de IL-6, IL-1b y MMP-8 en el líquido crevicular periimplantario (PICF) alrededor de implantes mecanizados versus microranurados con láser/curación/ pilares protésicos durante 1 año de función. Veinticuatro pacientes recibieron cada uno 2 implantes de una etapa con diseño de boca dividida en la misma mandíbula. En cada paciente se utilizó un implante, un pilar de cicatrización inmediata y un pilar protésico con superficie maquinada (grupo M), y un implante, un pilar de cicatrización inmediata y un pilar protésico con superficie microranurada con láser (grupo LMS). Se evaluaron el muestreo PICF, la profundidad de sondaje de las bolsas (PPD) y el sangrado al sondaje (BOP) a los 1, 3 y 12 meses. Los niveles de IL-6, IL-1b y MMP-8 se determinaron mediante sistemas de ensayo inmunoabsorbente ligado a enzimas específicos (ELI-SA). Se utilizó ANOVA de medidas repetidas para realizar comparaciones con grupos y entre grupos meses a 1, 3 y 12 meses. A los 3 y 12 meses, el grupo LMS mostró niveles de PD, BOP e IL-6, IL-1β y MMP-8 significativamente más bajos que el grupo M (P<0,05). Este estudio sugiere la presencia de más fenómenos de remodelación y/o inflamaciones alrededor de implantes/pilares con superficie mecanizada que alrededor de implantes/pilares con superficie microranurada con láser.
Citas
Berglundh, T., Lindhe, J., Ericsson, I., Marinello, C. P., Liljenberg, B., & Thomsen, P. The soft tissue barrier at implants and teeth. Clinl Oral Impl Res 1991; 2: 81-90. doi: 10.1034/j.1600-0501.1991.020206.x.
Guarnieri R., Reda R., Di Nardo D., Miccoli G., Zanza A., Testarelli L. In Vitro Direct and Indirect Cytotoxicity Comparative Analysis of One Pre-Hydrated versus One Dried Acellular Porcine Dermal Matrix. Materials (Basel). 2022 Mar 5; 15 (5): 1937. doi: 10.3390/ma15051937.
Sculean, A., Gruber, R., & Bosshardt, D. D. Soft tissue wound healing around teeth and dental implants. Jl Clinl Periodontol 2014; 41 (Suppl. 15): S6-S22. doi: 10.1111/jcpe.12206
Blázquez-Hinarejos, M., Ayuso-Montero, R., Jané-Salas, E., & López- López, J. Influence of surface modified dental implant abutments on connective tissue attachment: A systematic review. Arch Oral Biol 2017; 80: 185-192. doi: 10.1016/j.archoralbio.2017.04.020
Pesce, P., Menini, M., Tommasato, G., Patini, R., & Canullo, L. Influence of modified titanium abutment surface on peri-implant soft tissue behaviour: A systematic review of histological findings. Int J Oral Implantol 2019; 12 (4): 419-429.
Ghibaudo, M., Trichet, L., Le Digabel, J., Richert, A., Hersen, P., & Ladoux, B. Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophl J 2009; 97: 357-368. doi: 10.1016/j.bpj.2009.04.024
Weiss, P., & Garber, B. Shape and movement of mesenchyme cells as functions of the physical structure of the medium: Contributions to a quantitative morphology. Proc Nat Acad Sci 1952; USA, 38: 264-280. doi: 10.1073/pnas.38.3.264
Kunzler, T. P., Drobek, T., Schuler, M., & Spencer, N. D. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomat 2007; 28: 2175-2182. doi: 10.1016/j.biomaterials.2007.01.019
Guarnieri R., Reda R., Di Nardo D., Miccoli G., Zanza A., Testarelli L. Clinical, radiographic, and biochemical evaluation of two-piece versus one-piece single implants with a laser-microgrooved collar surface after 5 years of functional loading. Clin Implant Dent Relat Res. 2022 Oct; 24 (5): 676-682. doi: 10.1111/cid.13118
Bollen C.M., Papaioanno W., Van Eldere J., Schepers E., Quirynen M., van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Impl Res 1996; 7: 201-11. doi: 10.1034/j.1600-0501.1996.070302.x
Guarnieri R., Reda R., Zanza A., Miccoli G., Nardo D.D., Testarelli L. Can Peri-Implant Marginal Bone Loss Progression and a-MMP-8 Be Considered Indicators of the Subsequent Onset of Peri-Implantitis? A 5-Year Study. Diagnostics (Basel). 2022 Oct 26; 12 (11): 2599. doi: 10.3390/diagnostics12112599
Ricci J.L., Grew J.C., Alexander H. Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on microgrooved substrates. J Biomed Mater Res A. 2008; 85: 313-325. doi: 10.1002/jbm.a.31379
Grew J.C., Ricci J.L., Alexander H. Connective- tissue responses to defined biomaterial surfaces. II. Behavior of rat and mouse fibroblasts cultured on microgrooved substrates. J Biomed Mater Res A. 2008; 85: 326-335. doi: 10.1002/jbm.a.31378
Nevins, M., Camelo, M., Nevins, M.L., Schupbach, P., & Kim, D. M. Connective tissue attachment to laser-microgrooved abutments: A human histologic case report. Int J Periodontol & Rest Dent, 2012; 32: 385-392.
Geurs, N. C., Vassilopoulos, P. J., & Reddy, M. S. Histologic evidence of connective tissue integration on laser microgrooved abutments in humans. Clin Adv Periodontol 2011; 1: 29. doi: 10.1902/cap.2016.150068.
Blázquez-Hinarejos, M., Ayuso-Montero, R., Álvarez-López, J.M., Manzanares-Céspedes, M.C., & López-López, J. Histological differences in the adherence of connective tissue to laser-treated abutments and standard abutments for dental implants. An experi- mental pilot study in humans. Med Oral Patol Oral Cir Buc, 2017; 22 (6): e774-e779. doi: 10.4317/medoral.21949
Ionescu A.C., Brambilla E., Azzola F., Ottobelli M., Pellegrini G., Francetti L.A. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS ONE 2018; 13 (9). doi: 10.1371/journal.pone.0202262
John G., Schwarz F., Kravchenko A., Ommerborn M.A., Becker J. Effectivity of homecare and professional biofilm removal procedures on initial supragingival biofilm on laser-microtextured implant surfaces in an ex vivo model. Int J Implant Dent. 2021 May 21; 7 (1): 51. doi: 10.1186/s40729-021-00326-x
Renner L.D., Weibel D.B. Physicochemical regulation of biofilm formation. MRS bulletin. 2011; 36 (5): 347-355. doi: 10.1557/mrs.2011.65
Lorenzetti M., Dogsˇa I., Stossˇicki T., Stopar D., Kalin M., Kobe S., et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfac. 2015; 7 (3): 1644-1651. doi: 10.1021/am507148n
Dursun, E., & Tözüm, T.F. Peri-implant crevicular fluid analysis, enzymes and biomarkers: A systematic review. J Oral & Maxillofaci Res 2016; 7 (3): e9. doi: 10.5037/jomr.2016.7309
Sakallıoğlu, U., Lütfioğlu, M., Sakallıoğlu, E. E., Sert, S., & Ceylan, G. Osmotic pressure of periimplant sulcular and gingival crevicular fluids: A splitmouth, randomized study of its measurement and clinical significance. Clin Oral Impl Res 2011; 22 (7): 706-710. doi: 10.1111/j.1600-0501.2010.02044.x
Ma, J.; Kitti, U.; Teronen, O.; Sorsa, T.; Husa, V.; Laine, P.; Rönkä, H.; Salo, T.; Lindqvist, C.; Konttinen, Y. Collagenases in different categories of peri-implant vertical bone loss. J. Dent. Res. 2000, 79: 1870-1873. doi: 10.1177/00220345000790110901
Guarnieri, R., Miccoli, G., Reda, R., Mazzoni, A., Di Nardo, D., & Testarelli, L.. Sulcus fluid volume, IL-6, and Il-1b concentrations in periodontal and peri-implant tissues comparing machined and laser-microtextured collar/abutment surfaces during 12 weeks of healing: A split-mouth RCT. Clin Oral Impl Res 2021; 00, 1-11. doi: 10.1111/clr.13868.
Khoury, S.B., Thomas, L., Walters, J.D., Sheridan, J.F., & Leblebicioglu, B. Early wound healing following one-stage dental implant placement with and without antibiotic prophylaxis: a pilot study. J Periodontol 2008; 79: 1904-1912. doi: 10.1902/jop.2008.070670
Chen Z., Zhang Y., Li J., Wang H.L., Yu H. Influence of laser-microtextured surface collar on marginal bone loss and peri-implant soft tissue response: a systematic review and meta-analysis. J Periodontol. 2017; 88 (7): 651-62. doi: 10.1902/jop.2017.160805
Carrigy J., Sharma A., Perrotti V., Quaranta A. Clinical outcomes of laser microtextured implants or abutments: A systematic review. Int J Oral Implantol (Berl). 2021 May 12; 14 (2): 141-154. PMID: 34006078.
Kubo, H., Hayashi, T., Ago, K., Ago, M., Kanekura, T., & Ogata, M. (2014). Temporal expression of wound healing-related genes in skin burn injury. Leg Med 2014; 16: 8-13. doi: 10.1016/j.legalmed.2013.10.002
Lin, Z.-Q., Kondo, T., Ishida, Y., Takayasu, T., & Mukaida, N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6- deficient mice. J Leuk Biol 2003; 73: 713-721. doi: 10.1189/jlb.0802397.
Dienz O., Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009; 130 (1): 27-33. doi: 10.1016/j.clim.2008.08.018
Sorsa, T.; Uitto, V.J.; Suomalainen, K.; Vauhkonen, M.; Lindy, S. Comparison of interstitial collagenases from human gingiva, sulcular fluid and polymorphonuclear leukocytes. J. Periodontal Res. 1988, 23: 386-393. doi: 10.1111/j.1600-0765.1988.tb01618.x
Kiili, M.; Cox, S.W.; Chen, H.W.; Wahlgren, J.; Maisi, P.; Eley, B.M.; Salo, T.; Sorsa, T. Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: Molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue. J Clin Periodontol; 2002, 29: 224-232. doi: 10.1034/j.1600-051x.2002.290308.x
Duarte, P. M., Bastos, M. F., Fermiano, D., Rabelo, C. C., Perez-Chaparro, P. J., Figueiredo, L. C., Faveri, M., & Feres, M. (2015). Do subjects with aggressive and chronic periodontitis exhibit a different cyto- kine chemokine profile in the gingival crevicular fluid? A systematic review. J Period Res 2015; 50: 18-27. doi: 10.1111/jre.12180
John G., Becker J., Schwarz F. Rotating titanium brush for plaque removal from rough titanium surfaces - an in vitro study. Clin Oral Implants Res. 2013; 25: 838-42. doi: 10.1111/clr.12147
Cunha A., Elie A.M., Plawinski L., Serro A.P., do Rego A.M., Almeida A., et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl Surf Sci. 2016; 360: 485-493. doi: 10.1016/j.apsusc.2015.10.102
Di Giulio M., Traini T., Sinjari B., Nostro A., Caputi S., Cellini L. Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study. Clin Oral Impl Res. 2016; 27: 918-925. doi: 10.1111/clr.12659.
Drago L., Bortolin M., De Vecchi E., Agrappi S., Weinstein R.L., Mattina R., et al. Antibiofilm activity of sand- blasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions. J Chemother. 2016; 28 (5): 383-389. doi: 10.1080/1120009X.2016.1158489
Guarnieri R., Rappelli G., Piemontese M., Procaccini M., Quaranta A. A Double-Blind Randomized Trial Comparing Implants with Laser-Microtextured and Machined Collar Surfaces: Microbiologic and Clinical Results. Int J Oral Maxillofac Implants. 2016 Sep-Oct; 31 (5): 1117-25. doi: 10.11607/jomi.4563.
Guarnieri R., Reda R., Di Nardo D., Pagnoni F., Zanza A., Testarelli L. Effects of maintenance implant therapy with and without periodic removal and decontamination of prosthetic components on inflammatory peri-implant parameters. Int J Periodontics Restorative Dent. 2023 Oct 24; (7): s118-s128. doi: 10.11607/prd.6395
Reda R., Zanza A., Di Nardo D., Bellanova V., Xhajanka E., Testarelli L. Implant Survival Rate and Prosthetic Complications of OT Equator Retained Maxillary Overdenture: A Cohort Study. Prosthesis. 2022; 4 (4): 730-738. https://doi.org/10.3390/prosthesis4040057.
Iglhaut G., Schwarz F., Winter R.R., Mihatovic I., Stimmelmayr M., Schliephake H. Epithelial attachment and downgrowth on dental implant abutments--a comprehensive review. J Esthet Restor Dent. 2014; 26 (5): 324-31. doi: 10.1111/jerd.12097