Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Correlación inmunohistoquímica y clínico-patológica de la ADN metiltransferasa 3A y el ligando 1 (motivo C-X-C) en el carcinoma oral de células escamosas
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

Oral squamous cell carcinoma; DNA methyltransferase 3A; CXCL1; Immunohistochemistry; Tumor grading; Clinical characteristics.
Carcinoma oral de células escamosas; ADN metiltransferasa 3A; CXCL1; Inmunohistoquímica; Clasificación de tumores; Características clínicas.

Cómo citar

Ahmed, B. A., & Mohamed, M. H. (2024). Correlación inmunohistoquímica y clínico-patológica de la ADN metiltransferasa 3A y el ligando 1 (motivo C-X-C) en el carcinoma oral de células escamosas. Odovtos International Journal of Dental Sciences, 288–298. https://doi.org/10.15517/ijds.2024.60003

Resumen

La ADN metil transferasa 3A (DNMT3A) es una enzima que actúa añadiendo un nuevo grupo metilo al ADN favoreciendo el silenciamiento del ADN y la carcinogénesis. Se decía que las citoquinas ayudaban al cambio epigenético y mejoraban la activación de las metiltransferasas en muchos tipos de cáncer. El papel del ligando 1 de quimiocina (motivo C-X-C) (CXCL1) en el desarrollo del cáncer quedó demostrado en muchos informes. En este estudio, sugerimos que CXCL1 podría inducir la activación de DNMT3A, afectando la carcinogénesis del carcinoma oral de células escamosas (OSCC). Se calculó la puntuación inmunohistoquímica (IHC) y se realizó una correlación estadística para evaluar la expresión de DNMT3A epitelial además de CXCL1 epitelial y mesenquimal en OSCC y muestras de mucosa normal. DNMT3A, CXCL1 epitelial y mesenquimatoso reveló un aumento estadísticamente significativo en la puntuación inmune de la mucosa normal y entre diferentes grados tumorales, además de una relación significativa de las expresiones con el tamaño, el estadio y la afectación de los ganglios linfáticos del tumor. La correlación de Pearson detectó una correlación estadísticamente significativa de DNMT3A con CXCL1 epitelial y mesenquimal. Por tanto, la sobreexpresión de CXCL1 puede estar asociada con la regulación positiva de DNMT3A. DNMT3A, CXCL1 epitelial y mesenquimatoso se asociaron con grados histológicos y caracteres tumorales avanzados, lo que los sugiere como biomarcadores de pronóstico confiables en pacientes con OSCC.

https://doi.org/10.15517/ijds.2024.60003
PDF (English)
HTML (English)
EPUB (English)

Citas

Hema K.N., Smitha T., Sheethal H.S., Mirnalini S.A. Epigenetics in oral squamous cell carcinoma. JOMFP. 2017; 21 (2): 252. https://doi.org/10.4103/jomfp.jomfp_150_17

Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0

Bollati V., Baccarelli A. Environmental epigenetics. Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2

Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354

Gacem R.B., Hachana M., Ziadi S., Abdelkarim S.B., Hidar S., Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers. Hum Pathol. 2012; 43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022

Leonard S., Pereira M., Fox R., Gordon N., Yap J., Kehoe S., Luesley D., Woodman C., Ganesan R. Over-expression of DNMT3A predicts the risk of recurrent vulvar squamous cell carcinomas. Gynecol Oncol. 2016; 143 (2): 414-20. https://doi.org/10.1016/j.ygyno.2016.09.001

Daniel F.I., Rivero E.R., Modolo F., Lopes T.G., Salum F.G. Immunohistochemical expression of DNA methyltransferases 1, 3a and 3b in oral leukoplakias and squamous cell carcinomas. Arch Oral Biol. 2010; 55 (12): 1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009

Adhikari B.R., Uehara O., Matsuoka H., Takai R., Harada F., Utsunomiya M., Chujo T., Morikawa T., Shakya M., Yoshida K., Sato J. Immunohistochemical evaluation of Klotho and DNA methyltransferase 3a in oral squamous cell carcinomas. Med Mol Morphol. 2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9

Liu C.Y., Xu J.Y., Shi X.Y., Huang W., Ruan T.Y., Xie P., Ding J.L. M2-polarized tumor-associated macrophages promoted epithelial–mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 2013; 93 (7): 844-54. https://doi.org/10.1038/labinvest.2013.69

Li W., Zhang X., Wang J., Li M., Cao C., Tan J., Ma D., Gao Q. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635

Tuong Z.K., Lewandowski A., Bridge J.A., Cruz J.L., Yamada M., Lambie D., Lewandowski R., Steptoe R.J., Leggatt G.R., Simpson F., Frazer I.H. Cytokine/chemokine profiles in squamous cell carcinoma correlate with precancerous and cancerous disease stage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0

Koontongkaew S., Amornphimoltham P., Yapong B. Tumor-stroma interactions influence cytokine expression and matrix metalloproteinase activities in paired primary and metastatic head and neck cancer cells. Cell Biol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009

Peltanova B., Raudenska M., Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5

Kasashima H., Yashiro M., Nakamae H., Kitayama K., Masuda G., Kinoshita H., Fukuoka T., Hasegawa T., Nakane T., Hino M., Hirakawa K. CXCL1-Chemokine (CXC Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow–Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. Am J Pathol. 2016; 186 (11): 3028 -39. https://doi.org/10.1016/j.ajpath.2016.07.024

Wan X., Hong Z., Mao Y., Di W. Correlations of AKIP1, CXCL1 and CXCL2 expressions with clinicopathological features and survival profiles in cervical cancer patients. Transl Cancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47

Yu S., Yi M., Xu L., Qin S., Li A., Wu K. CXCL1 as an unfavorable prognosis factor negatively regulated by DACH1 in non-small cell lung cancer. Front Oncol. 2020; 9: 1515. https://doi.org/10.3389/fonc.2019.01515

e Rolle A.F., Chiu T.K., Fara M., Shia J., Zeng Z., Weiser M.R., Paty P.B., Chiu V.K. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Transl Med. 2015; 13 (1): 1-2. https://doi.org/10.1186/s12967-015-0555-4

Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., Kok S.H., Ko J.Y., Tsai FC, Chia JS. Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002

Wei Z.W., Xia G.K., Wu Y., Chen W., Xiang Z., Schwarz R.E., Brekken R.A., Awasthi N., He Y.L., Zhang C.H. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015; 359 (2): 335-43. https://doi.org/10.1016/j.canlet.2015.01.033

Wang D., Sun H., Wei J., Cen B., DuBois R.N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199

Lee C.H., Syu S.H., Liu K.J., Chu P.Y., Yang W.C., Lin P., Shieh W.Y. Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer. Oncotarget. 2015; 6 (36): 38866. https://doi.org/10.18632/oncotarget.5640

Tiwari N., Tiwari V.K., Waldmeier L., Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E., Christofori G. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013; 23 (6): 768-83. https://doi.org/10.1016/j.ccr.2013.04.020

Cardenas H., Vieth E., Lee J., Segar M., Liu Y., Nephew K.P., Matei D. TGF-beta induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics. 2014; 9 (11): 1461-72. https://doi.org/10.4161/15592294.2014.971608

Klymenko Y., Nephew K.P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers. 2018; 10 (9): 295. https://doi.org/10.3390/cancers10090295

Almangush A., Mäkitie A.A., Triantafyllou A., de Bree R., Strojan P., Rinaldo A., Hernandez-Prera J.C., Suárez C., Kowalski L.P., Ferlito A., Leivo I. Staging and grading of oral squamous cell carcinoma: An update. Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799

Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters. Pathology. 2001; 33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/

Park S., Kim J., Jang W., Kim K.M., Jang K.T. Clinicopathologic significance of the delta-like ligand 4, vascular endothelial growth factor, and hypoxia-inducible factor-2α in gallbladder cancer. J Pathol Transl Med. 2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01

Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80

Miyake M., Hori S., Morizawa Y., Tatsumi Y., Nakai Y., Anai S., Torimoto K., Aoki K., Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia. 2016; 18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002

Daniel F.I., Alves S.R., Vieira D.S., Biz M.T., Daniel I.W., Modolo F. Immunohistochemical expression of DNA methyltransferases 1, 3a, and 3b in actinic cheilitis and lip squamous cell carcinomas. J Oral Pathol Med. 2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453

Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K., Ro J.Y., Kim J.S., Yu E. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol. 2003; 34 (1): 11-7. https://doi.org/10.1053/hupa.2003.5

Lees-Murdock D.J., Shovlin T.C., Gardiner T., De Felici M., Walsh C.P. DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn: an official publication of the American Association of Anatomists. 2005; 232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288

Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y., Shen Y., Huang H., Fan H., Chen J. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578

Miyake M., Lawton A., Goodison S., Urquidi V., Gomes-Giacoia E., Zhang G., Ross S., Kim J., Rosser C.J. Chemokine (CXC) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322

Yuan M., Zhu H., Xu J., Zheng Y., Cao X., Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410

Chen X., Jin R., Chen R., Huang Z. Complementary action of CXCL1 and CXCL8 in pathogenesis of gastric carcinoma. Int J Clin Exp Pathol. 2018; 11 (2): 1036-45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/

Wang N., Liu W., Zheng Y., Wang S., Yang B., Li M., Song J., Zhang F., Zhang X., Wang Q., Wang Z. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 2018; 9 (9): 1-18. https://doi.org/10.1038/s41419-018-0876-3

Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer. Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5

Martin M., Ancey P.B., Cros M.P., Durand G., Le Calvez-Kelm F., Hernandez-Vargas H., Herceg Z. Dynamic imbalance between cancer cell subpopulations induced by transforming growth factor beta (TGF-beta) is associated with a DNA methylome switch. BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435

Mathot P., Grandin M., Devailly G., Souazé F., Cahais V., Moran S., Campone M., Herceg Z., Esteller M., Juin P., Mehlen P., Dante R. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis. 2017; 6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88

Comentarios

Derechos de autor 2024 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.