Resumen
Evaluar la influencia de la profundidad cavitaria/distancia de la luz fotopolimerizante y el material sobre el grado de conversión, resistencia a flexión biaxial y microdureza de una resina nanohíbrida (superficies superior/inferior), mediante técnica incremental. Se fabricaron muestras cuadrangulares (4x4 mm) con variaciones de espesores de 2, 4 y 6 mm (n=10 por medida), simulando la profundidad de una preparación cavitaria, utilizando una resina nanohíbrida (Forma, A3, Ultradent) empleando la técnica incremental. Se evaluó microdureza Vickers y grado de conversión en superficies superior/inferior. La resistencia a la flexión biaxial se probó en discos de resina (8,5 mm diámetro, 2 mm espesor) utilizando moldes impresos 3D (apilados verticalmente). Microdureza y grado de conversión se analizaron empleando ANOVA de 2 vías y resistencia a la flexión biaxial con ANOVA de 1 vía. Para microdureza, el factor “espesor” más la interacción “superficie/espesor” resultaron estadísticamente significativos (p<0,05). El grupo de 2 mm mostró resultados más altos (99,41±52,23), seguido por 4 mm (84,1±15,74 VHN), mientras que 6 mm tuvo los más bajos (68,60±18,69 VHN), observándose valores más bajos en las superficies inferiores para este último grupo. Resistencia a la flexión biaxial no mostró diferencias significativas entre grupos. El grado de conversión fue significativamente mayor en superficies superiores en comparación con las superficies inferiores (superior: 47,74±9,67 %; inferior: 21,93±8,57 %). Para los grupos de 2 mm/4 mm, la polimerización siguió siendo adecuada (superficies superior/inferior). 6 mm produjo una polimerización de menor calidad, especialmente en superficies inferiores. El grado de conversión fue mayor en superficies superiores para todos los grupos. No se observó impacto significativo en el grado de conversión o resistencia a flexión según la distancia desde la luz fotopolimerizante. Las propiedades físicas y el grado de conversión no fueron proporcionales.
Citas
Mulligan S., Hatton P.V., Martin N. Resin-based composite materials: elution and pollution. Br Dent J. 2022; 232 (9): 644-52.
Bellinaso M.D., Soares F.Z.M., Rocha R. de O. Do bulk-fill resins decrease the restorative time in posterior teeth? A systematic review and meta-analysis of in vitro studies. J Investig Clin Dent. 2019; 10 (4).
Illie N., Hickel R. Resin composite restorative materials: Composites. Aust Dent J. 2011; 56 (Suppl 1): 59-66.
Zhou X., Huang X., Li M., Peng X., Wang S., Zhou X., et al. Development and status of resin composite as dental restorative materials. J Appl Polym Sci. 2019; 136 (44).
Stein P.S., Sullivan J., Haubenreich J.E., Osborne P.B. Composite resin in medicine and dentistry. J Long Term Eff Med Implants. 2005; 15 (6): 641-54.
Zimmerli B., Strub M., Jeger F., Stadler O., Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010; 120 (11): 972-86.
Aminoroaya A., Esmaeely Neisiany R., Nouri Khorasani S., Panahi P., Das O., Ramakrishna S. A review of dental composites: Methods of characterizations. ACS Biomater Sci Eng. 2020; 6 (7): 3713-34.
Shinkai K., Taira Y., Suzuki S., Kawashima S., Suzuki M. Effect of filler size and filler loading on wear of experimental flowable resin composites. J Appl Oral Sci. 2018; 26 (0).
Rebholz-Zaribaf N., Özcan M. Adhesion to zirconia as a function of primers/silane coupling agents, luting cement types, aging and test methods. J Adhes Sci Technol. 2017; 31 (13): 1408-21.
Ferracane J.L. Resin composite-State of the Art. Dent Mater. 2011; 27 (1): 29-38.
Randolph L.D., Palin W.M., Leloup G., Leprince J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016; 32 (12): 1586-99.
Bompolaki D., Lubisich E.B., Fugolin A.P. Resin-based composites for direct and indirect restorations. Dent Clin North Am. 2022; 66 (4): 517-36.
Price R.B.T. Light curing in dentistry. Dent Clin North Am. 2017; 61 (4): 751-78.
Fugolin A.P.P., Pfeifer C.S. New resins for dental composites. J Dent Res. 2017; 96 (10): 1085-91.
Al-Zain A.O., Eckert G.J., Platt J.A. The influence of distance on radiant exposure and degree of conversion using different light-emitting-diode curing units. Oper Dent. 2019; 44 (3): E133-44.
Rueggeberg F.A. State-of-the-art: Dental photocuring-A review. Dent Mater. 2011; 27 (1): 39-52.
Strazzi-Sahyon H., Rocha E., Assunção W., dos Santos P. Influence of light-curing intensity on color stability and microhardness of composite resins. Int J Periodontics Restor Dent. 2020; 40 (1): 129-34.
Alkhudhairy F. Wear resistance of bulkfill composite resin restorative materials polymerized under different curing intensities. J Contemp Dent Pract. 2017;18: 39-43.
Felix C.A., Price R.B.T. The effect of distance from light source on light intensity from curing lights. J Adhes Dent. 2003; 5 (4): 283-91.
Durner J., Obermaier J., Draenert M., Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater. 2012; 28 (11): 1146-53.
AlShaafi M.M. Factors affecting polymerization of resin-based composites: A literature review. Saudi Dent J. 2017; 29 (2): 48-58.
Ferracane J.L., Hilton T.J., Stansbury J.W., Watts D.C., Silikas N., Ilie N., et al. Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity (handling, polymerization, dimensional changes). Dent Mater. 2017; 33 (11): 1171-91.
Abidin T., Dennis D., Siagian J.S., Ikhsan T. Effect of different LED light-curing units on degree of conversion and microhardness of bulk-fill composite resin. J Contemp Dent Pract. 2020; 21 (6): 615-20.
Eshmawi Y.T., Al-Zain A.O., Eckert G.J., Platt J.A. Variation in composite degree of conversion and microflexural strength for different curing lights and surface locations. J Am Dent Assoc. 2018; 149 (10): 893-902.
Price R.B.T., Labrie D., Whalen J.M., Felix C.M. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011; 77: b9.
Shortall A.C., Price R.B.T., MacKenzie L., Burke F.J.T. Guidelines for the selection, use, and maintenance of LED light-curing units – Part II. Br Dent J. 2016; 221 (9): 551-4.
Catelan A., de Araújo L.S.N., da Silveira B.C.M., Kawano Y., Ambrosano G.M.B., Marchi G.M., et al. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand. 2015; 73 (4): 298-301.
Oh S., Kim H.J., Kim H.J., Antonson S.A., Kim S.Y. Influence of irradiation distance on the mechanical performances of resin composites polymerized with high-irradiance light curing units. Biomater Res. 2022; 26 (1).
Gonçalves L., Amaral C.M., Poskus L.T., Guimarães J.G.A., Silva E.M. Degradation of resin composites in a simulated deep cavity. Braz Dent J. 2014; 25 (6): 532-7.
Faria-e-Silva A.L., Fanger C., Nguyen L., Howerton D., Pfeifer C.S. Impact of material shade and distance from light curing unit tip on the depth of polymerization of composites. Braz Dent J. 2017; 28 (5): 632-7.
International Organization for Standardization. Dentistry-Polymer based restorative materials, International standard ISO 4049; 5th Edition 2019-05.
International Standard ISO. Metallic materials-Vicker's hardness test-Part 1: test method (ISO 6507-1: 2018).
Staudacher M., Lube T., Supancic P. The Ball-on-Three-Balls strength test for discs and plates: Extending and simplifying stress evaluation. J Eur Ceram Soc. 2023; 43 (2): 648-60.
McNaught A., Wilkinson A. IUPAC compendium of chemical terminology. Int Union Pure Appl Chem. 1997; 19: 458-65.
de Mendonça B.C., Soto-Montero J.R., de Castro E.F., Pecorari V.G.A., Rueggeberg F.A., Giannini M. Flexural strength and microhardness of bulk-fill restorative materials. J Esthet Restor Dent. 2021; 33 (4): 628-35.
El-Askary F.S., Botros S.A., Nassif M.S.A., Özcan M. Flexural strength of nano-hybrid resin composite as a function of light attenuation distance and specimen dimension. J Adhes Sci Technol. 2017; 31 (5): 520-9.
Musanje L., Darvell B.W. Polymerization of resin composite restorative materials: exposure reciprocity. Dent Mater. 2003; 19 (6): 531-41.
Lima R.B.W., Murillo-Gómez F., Sartori C.G., De Góes M.F. Effect of light absence or attenuation on biaxial flexural strength of dual-polymerized resin cements after short-and long-term storage. J Esthet Restor Dent. 2019; 31 (1): 80-7.
Jandt K.D., Mills R.W. A brief history of LED photopolymerization. Dent Mater. 2013; 29 (6): 605-17.
Al-Zain A.O., Marghalani H.Y. Influence of light-curing distances on microflexural strength of two resin-based composites. Oper Dent. 2020; 45 (3): 297-305.
El-Askary F.S., El-Korashy D.I. Influence of shade and light-curing distance on the degree of conversion and flexural strength of a dual-cure core build-up resin composite. Am J Dent. 2012; 25 (2): 97-102.
Rueggeberg F.A., Cole M.A., Looney S.W., Vickers A., Swift E.J. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent. 2009; 21 (1): 43-61.
Özcan C., Lestriez P., Berry-Kromer V., Thiebaud F., Sockalingum G.D., Untereiner V., et al. Misinterpretation of ISO 4049 standard recommendations: Impact on Young’s modulus and conversion degree of dental composites. J Mech Behav Biomed Mater. 2020; 110: 103947.
McNaught A., Wilkinson A. IUPAC compendium of chemical terminology. Int Union Pure Appl Chem. 1997; 19: 458-65.
Haifa B. Led Dental photopolymerization. A literature review. Int J Med Dent. 2021; 25: 53-62.
##plugins.facebook.comentarios##

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2025 Javier F. Roque Trujillo, Fabián Murillo-Gómez