Abstract
The neural representation of sound in the auditory cortex is not invariably predetermined by its acoustical properties, but it is constantly reshaped while the listener acquires new experiences. Such plastic changes are a prerequisite for lifelong learning and allow some degree of rehabilitation after brain injuries. Several neurotransmitter systems modulate these plastic changes. In this paper, we focus on how the neurotransmitter dopamine modulates learning-related plasticity in auditory cortex, and how animal and human research can complement each other in providing an experimental approach that has relevance for studying mechanisms of recovery of function
References
Albert, S. J., & Kesselring, J. (2012). Neurorehabilitation of stroke. J Neurol, 259(5), 817-832. doi: 10.1007/s00415-011-6247-y
Bakin, J. S., South, D. A., & Weinberger, N. M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav Neurosci, 110(5), 905-913.
Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci USA, 93(20), 11219-11224.
Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79-83.
Bao, S., Chang, E. F., Woods, J., & Merzenich, M. M.(2004). Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. NatNeurosci, 7(9), 974-981.
Bieszczad, K. M., & Weinberger, N. M. (2010). Remodeling the cortex in memory: Increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiol Learn Mem, 94(2), 127-144. doi: 10.1016/j.nlm.2010.04.009
Blake, D. T., Heiser, M. A., Caywood, M., & Merzenich, M. M. (2006). Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron, 52(2), 371-381.
Blake, D. T., Strata, F., Churchland, A. K., & Merzenich, M. M. (2002). Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci USA, 99(15), 10114-10119.
Brechmann, A., & Scheich, H. (2005). Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex, 15(5), 578-587.
Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105(3), 416-430.
Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357-360.
Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav.Neurosci, 107(4), 539-551.
Fallon, J. B., Irvine, D. R., & Shepherd, R. K. (2008). Cochlear implants and brain plasticity. Hear Res, 238(1-2), 110-117. doi:10.1016/j.heares.2007.08.004
Froemke, R. C., Carcea, I., Barker, A. J., Yuan, K., Seybold, B. A., Martins, A. R., ... Schreiner, C. E. (2013). Long-term modification of cortical synapses improves sensory perception. Nat Neurosci, 16(1), 79-88. doi: 10.1038/nn.3274
Froemke, R. C., & Jones, B. J. (2011). Development of auditory cortical synaptic receptive fields. Neurosci Biobehav Rev, 35(10), 2105-2113. doi: 10.1016/j.neubiorev.2011.02.006
Galvan, V. V., & Weinberger, N. M. (2002). Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology Learn Mem, 77(1), 78-108. doi:10.1006/nlme.2001.4044
Hui, G. K., Wong, K. L., Chavez, C. M., Leon, M.I., Robin, K. M., & Weinberger, N. M. (2009). Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiol Learn Mem, 92(1), 27-34. doi:10.1016/j.nlm.2009.02.008
James, W. (1890). The Principles of Psychology. New York, USA: Cosimo.
Jancke, L., Gaab, N., Wustenberg, T., Scheich, H., & Heinze, H. J. (2001). Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res.Cogn Brain Res., 12(3), 479-485.
Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity [see comments]. Science, 279(5357), 1714-1718.
Kilgard, M. P., Vazquez, J. L., Engineer, N. D., & Pandya, P. K. (2007). Experience dependent plasticity alters cortical synchronization. Hear Res, 229(1-2), 171- 179. doi: 10.1016/j.heares.2007.01.005
Kisley, M. A., & Gerstein, G. L. (2001). Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. Eur J Neurosci, 13(10), 1993-2003.
Kluge, C., Bauer, M., Leff, A. P., Heinze, H. J., Dolan, R. J., & Driver, J. (2011). Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal. Proc Natl Acad Sci U S A, 108(30), 12545-12550. doi: 10.1073/pnas.1016124108
Knecht, S., Breitenstein, C., Bushuven, S., Wailke, S., Kamping, S., Floel, A., . . . Ringelstein, E. B. (2004). Levodopa: faster and better word learning in normal humans. Ann.Neurol., 56(1), 20-26.
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683-3687.
Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends Neurosci, 35(2), 111-122. doi:10.1016/j.tins.2011.09.004
Liu, R. C., & Schreiner, C. E. (2007). Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biol, 5(7), e173. doi: 10.1371/journal.pbio.0050173
Ljungberg, T., Apicella, P., & Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67(1), 145-163.
Manunta, Y., & Edeline, J. M. (1997). Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur.J Neurosci, 9(4), 833-847.
Manunta, Y., & Edeline, J. M. (1998). Effects of noradrenaline on rate-level function of auditory cortex neurons: is there a “gating” effect of noradrenaline? Experimental Brain Research, 118(3), 361-372.
Manunta, Y., & Edeline, J. M. (1999). Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. Eur J Neurosci, 11(6), 2134-2150.
Manunta, Y., & Edeline, J. M. (2004). Noradrenergic induction of selective plasticity in the frequency tuning of auditory cortex neurons. Journal of Neurophysiology, 92(3), 1445-1463.
May, A. (2011). Experience-dependent structural plasticity in the adult human brain. [Review]. Trends Cogn Sci, 15(10), 475-482. doi:10.1016/j.tics.2011.08.002
Meyer, M., Elmer, S., & Jancke, L. (2012). Musical expertise induces neuroplasticity of the planum temporale. Ann N Y Acad Sci, 1252, 116-123. doi:10.1111/j.1749-6632.2012.06450.x
Miasnikov, A. A., McLin, D., & Weinberger, N. M. (2001). Muscarinic dependence of nucleus basalis induced conditioned receptive field plasticity. Neuroreport, 12(7), 1537-1542.
Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W., & Nitsche, M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol, 588(18), 3415-3424. doi:10.1113/jphysiol.2010.190181
Moore, D. R., & Shannon, R. V. (2009). Beyond cochlear implants: awakening the deafened brain. [Review]. Nat Neurosci, 12(6), 686-691. doi: 10.1038/nn.2326
Morris, J. S., Friston, K. J., & Dolan, R. J. (1998). Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc.R.Soc.Lond.B.Biol.Sci., 265(1397), 649-657.
Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. Eur J Neurosci, 8(5), 1001-1017.
Ohl, F. W., & Scheich, H. (1997). Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J Comp Physiol A, 181(6), 685-696.
Ohl, F. W., & Scheich, H. (2005). Learning-induced plasticity in animal and human auditory cortex. Curr.Opin.Neurobiol., 15(4), 470-477.
Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412(6848), 733-736.
Pienkowski, M., & Eggermont, J. J. (2011). Cortical tonotopic map plasticity and behavior. Neurosci Biobehav Rev, 35(10), 2117-2128. doi:10.1016/j.neubiorev.2011.02.002
Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci, 26(18), 4970-4982. doi:10.1523/JNEUROSCI.3771-05.2006
Puschmann, S., Brechmann, A., & Thiel, C. M. (2013). Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.Hum Brain Mapp, 34(11). 2841-2851. doi:10.1002/hbm.22107
Scheich, H., Brechmann, A., Brosch, M., Budinger, E., Ohl, F. W., Selezneva, E., . . . Wetzel, W. (2011). Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept. Hear Res, 271(1-2), 3-15. doi:10.1016/j.heares.2010.10.006
Scheidtmann, K. (2004). Advances in adjuvant pharmacotherapy for motor rehabilitation: Effects of levodopa. Restor Neurol Neurosci, 22(3-5), 393-398.
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J.,Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci, 5(7), 688-694. doi: 10.1038/nn871
Schreiner, C. E., & Polley, D. B. (2014). Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol, 24C, 143- 56. doi: 10.1016/j.conb.2013.11.009
Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. The Journal of Neuroscience, 13(3), 900-913.
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.
Spierer, L., De Lucia, M., Bernasconi, F., Grivel, J., Bourquin, N. M., Clarke, S., & Murray, M. M. (2011). Learning-induced plasticity in human audition: objects, time, and space. Hear Res, 271(1-2), 88-102. doi:10.1016/j.heares.2010.03.086
Stark, H., & Scheich, H. (1997). Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem, 68(2), 691-697.
Thiel, C. M. (2007). Pharmacological modulation of learning-induced plasticity in human auditory cortex. Restor Neurol Neurosci, 25(3-4), 435-443.
Thiel, C. M., Bentley, P., & Dolan, R. J. (2002). Effects of cholinergic enhancement on conditioningrelated responses in human auditory cortex. Eur J Neurosci, 16(11), 2199-2206.
Thiel, C. M., Friston, K. J., & Dolan, R. J. (2002). Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Neuron, 35(3), 567-574.
van Wassenhove, V., & Nagarajan, S. S. (2007). Auditory cortical plasticity in learning to discriminate modulation rate. J Neurosci, 27(10), 2663-2672. doi:10.1523/JNEUROSCI.4844-06.2007
Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci, 5(4), 279-290.
Weinberger, N. M. (2007). Auditory associative memory and representational plasticity in the primary auditory cortex.. Hear Res, 229(1-2), 54-68. doi: 10.1016/j.heares.2007.01.004
Weinberger, N. M., Javid, R., & Lepan, B. (1993). Longterm retention of learning-induced receptive-field plasticity in the auditory cortex. Proc Natl Acad Sci USA, 90(6), 2394-2398.
Weis, T., Brechmann, A., Puschmann, S., & Thiel, C. M. (2013). Feedback that confirms reward expectation triggers auditory cortex activity. J Neurophysiol, 110(8):1860-8. doi: 10.1152/jn.00128.2013.
Weis, T., Puschmann, S., Brechmann, A., & Thiel, C. M. (2012). Effects of L-dopa during auditory instrumental learning in humans. PLoS One, 7(12), e52504. doi: 10.1371/journal.pone.0052504
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Duzel, E. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent
long-term memory formation. Neuron, 45(3), 459-467.