Resumen
Objetivo. La mejora de las habilidades cognitivas es un tema de especial interés en la actualidad. Todavía se está determinando si técnicas como la imaginería mental (IM) podrían generar una mejora cognitiva a través de la modulación de la actividad cerebral. El propósito de este estudio fue aportar información sobre el impacto de la imaginería mental en el aprendizaje motor implícito. Método. Se aplicó un protocolo de IM a un grupo experimental antes de realizar una tarea de aprendizaje motor implícito, mientras que un grupo de control recibió realimentación simulada. Además, para tener evidencia empírica de la activación cortical durante la IM, se registró, mediante electroencefalografía, la actividad de la corteza motora durante el inicio y durante la tarea de aprendizaje motor implícito. Resultados. Los modelos ANCOVA muestran cómo el protocolo de IM impacta el proceso de aprendizaje motor implícito, pero no tan claramente como se esperaba.
Citas
Aliño, M., Gadea, M., & Espert, R. (2016). A critical view of neurofeedback experimental designs: sham and control as necessary conditions. International Journal Neurology and Neurotherapy, 3(1), 1-2. https://doi.org/10.23937/2378-3001/3/1/1041
BrainMaster Technologies, Inc. (2012). BrainMaster 2.5 Software User Manual. BrainMaster Technologies, Inc.
Benedek, M., Bergner, S., Könen, T., Fink, A., & Neubauer, A. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49(12), 3505-3511. https://doi.org/10.1016/j.neuropsychologia.2011.09.004
Bostrom, N., & Sandberg, A. (2009). Cognitive Enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311-341. https://doi.org/10.1007/s11948-009-9142-5
Caligiore, D., Mustile, M., Spalletta, G., & Baldassarre, G. (2017). Action observation and motor imagery for rehabilitation in Parkinson´s disease: A systematic review and integrative hypothesis. Neuroscience and Biobehavioral Reviews, 72, 210-222. http://dx.doi.org/10.1016/j.neubiorev.2016.11.005
Curran, T., & Schacter, D. (2001). Implicit learning and memory: Psychological and neural aspects. International Encyclopedia of the Social & Behavior Sciences, 7237-7241. https://doi.org/10.1016/B0-08-043076-7/03513-0
Dahm, S. & Rieger, M. (2016). Is there symmetry in motor imagery? Exploring different versions of the mental chronometry paradigm. Attention, Perception, & Psychophysics, 78, 1794-1805. https://doi.org/10.3758/s13414-016-1112-9
Dubljević, V., Venero, C., & Knafo, S. (2015). What is Cognitive Enhancement? En S. Knafo & C. Venero (Eds.), Cognitive Enhancement: Pharmacologic, Environmental and Genetic Factors (pp. 1-9). Academic Press.
Gallant, C., Drumheller, A., & Mckelvie, S. (2016). Effect of improper soccer heading on serial reaction time task performance. Current Psychology, 36, 286-296. https://doi.org/10.1007/s12144-016-9414-6
Gentili, R., & Papaxanthis, C. (2015). Laterality effects in motor learning by mental practice in right handers. Neuroscience, 297, 231-242. http://dx.doi.org/10.1016/j.neuroscience.2015.02.055
Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience & Biobehavioral Reviews, 94, 31-44. https://doi.org/10.1016/j.neubiorev.2018.08.003
Helwig, N.E. (2018). eegkit: Toolkit for Electroencephalography Data. https://CRAN.R-project.org/package=eegkit
López-Ramón, M., Introzzi, I., & Richard’s, M. (2009). La independencia del aprendizaje implícito con respecto a la inteligencia general en niños de edad escolar. Anales de Psicología, 25(1), 112-122. https://revistas.um.es/analesps/article/view/71561
Kim, Y., Park, E., Lee, A., Im, C., & Kim, Y. (2018). Changes in network connectivity during motor imagery and execution. PLoS ONE, 13(1), e0190715. https://doi.org/10.1371/journal.pone.0190715
Ladda, A. M., Lebon, F., & Lotze, M. (2021). Using motor imagery practice for improving motor performance - A review. Brain and Cognition, 150, 105705. https://doi.org/10.1016/j.bandc.2021.105705
Leap Motion Developer (2016, 28 de julio). API Overview. https://developer.leapmotion.com/documentation/v2/python/devguide/Leap_Overview.html
Lebon, F., Horn, U., Domin, M., & Lotze, M. (2018). Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation. Human Brain Mapping, 39(4), 1805-1813. https://doi.org/10.1002/hbm.23956
Lewkowicz, D., Delevoye-Turrell, Y., Bailly, D., Andry, P., & Gaussier, P. (2013). Reading motor intention through mental imagery. Adaptative Behavior, 21(5), 315-420. https://doi.org/10.1177/1059712313501347
Marcuse, L., Fields, M., & Yoo, J. (2016). Rowan’s Primer of EEG. Elsevier.
Nissen, M., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19(1), 1-32. https://doi.org/10.1016/0010-0285(87)90002-8
Poldrack, R., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356-5364. https://doi.org/10.1523/JNEUROSCI.3880-04.2005
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Racine, E., Sattler, S., & Boehlen, W. (2021). Cognitive enhancement: Unanswered questions about human psychology and social behavior. Science and Engineering Ethics, 27(19), 1-25. https://doi.org/10.1007/s11948-021-00294-w
Reber, J., Batterink, L., Thompson, K., & Reuveni, B. (2019). Implicit learning: history and applications. En A. Cleeremans, V. Allakhverdov & M. Kuvaldina (Eds.), Implicit Learning: 50 Years (pp. 16-37). Routledge.
Revelle, W. (2018). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. https://CRAN.R-project.org/package=psych
Robertson, E. (2007). The serial reaction time task: Implicit motor skill learning? The Journal of Neuroscience, 27(38), 1073-1075. https://doi.org/10.1523/JNEUROSCI.2747-07.2007
Ros, T., Munneke, M., Parkinson, L., & Gruzelier, J. (2014). Neurofeedback facilitation of implicit motor learning. Biological Psychology, 95, 54-58. http://dx.doi.org/10.1016/j.biopsycho.2013.04.013
Schack, T., Essig, K., Frank, C., & Koester, D. (2014). Mental representation and motor imagery training. Frontiers in Human Neuroscience, 8, 1-10. https://doi.org/110.3389/fnhum.2014.00328
Toth, A. J., McNeill, E., Hayes, K., Moran, A. P., & Campbell, M. (2020). Does mental practice still enhance performance? A 24 year follow-up and meta-analytic replication and extension. Psychology of Sport and Exercise, 48, 101672. https://doi.org/10.1016/j.psychsport.2020.101672
Van Dyck, D., Deconinck, N., Aeby, A., Baijot, S., Coquelet, N., Trotta, N., Rovai, A., Goldman, S., Urbain, C., Wens, V., & De Tiège, X. (2021). Resting-state functional brain connectivity is related to subsequent procedural learning skills in school-aged children. NeuroImage, 240, 118368. https://doi.org/10.1016/j.neuroimage.2021.118368
Vinicius M., Catelli, A., & Cagy M. (2010). EEG changes during sequences of visual and khinesthetic motor imaginery. Arq Neuropsiquiat., 68(4), 556-561. https://doi.org/10.1590/s0004-282x2010000400015
Unsworth, N., & Engle, R. (2005). Individual differences in working memory capacity and learning: Evidence from the serial reaction time task. Memory & Cognition, 33(2), 213-220. https://doi.org/10.3758/bf03195310
Wilkinson, L., Teo, J., Obeso, I., Rothwell, J., & Jahanshashi, M. (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. Journal of Cognitive Neuroscience, 22(3), 427-436. https://doi.org/10.1162/jocn.2009.21208
Williams, J., Pearce, A. J., Loporto, M., Morris, T., & Holmes, P. S. (2012). The relationship between corticospinal excitability during motor imagery and motorimagery ability. Behavioural Brain Research, 226(2), 369–375. https://doi.org/10.1016/j.bbr.2011.09.014
Wiestler, T., & Diedrichsen, J. (2013). Skill learning strengthens cortical representations of motor sequences. eLlife, 2, e00801. https://doi.org/10.7554/eLife.00801
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2024 José Manuel Mora-Benambourg, Bradly Marín-Picado