Actualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

OAI: https://revistas.ucr.ac.cr/index.php/actualidades/oai
Diferencias individuales en modelos animales: un enfoque para el estudio de factores neurobiológicos relacionados con depresión
PDF (Español (España))

Arquivos suplementares

autoría (Español (España))

Como Citar

Sequeira Cordero, A., & Fornaguera Trías, J. (2014). Diferencias individuales en modelos animales: un enfoque para el estudio de factores neurobiológicos relacionados con depresión. Actualidades En Psicología, 28(117), 53–66. https://doi.org/10.15517/ap.v28i117.14115

Resumo

El estudio de las diferencias individuales en la prueba de nado forzado (PNF) en ratas permite la identificación de factores de susceptibilidad o de resistencia en el desarrollo conductas relacionadas con la depresión. Para estudiar estas diferencias, varios grupos de ratas fueron sometidos a la PNF; posteriormente, los animales con baja y alta inmovilidad fueron comparados, lo que permitió identificar una serie de características que podrían estar actuando como factores de riesgo o de protección. Así, factores neurobiológicos como la expresión diferencial en el núcleo accumbens del receptor 1 para el factor liberador de corticotropina (CRFR1), una tasa diferencial de recambio de dopamina en esa misma región y la cinética de expresión diferencial del factor neurotrófico derivado del cerebro (BDNF) en la corteza prefrontal, podrían jugar un papel importante en la modulación de conductas depresivas. La presente revisión resume nuestros resultados más importantes en esta línea de investigación.

https://doi.org/10.15517/ap.v28i117.14115
PDF (Español (España))

Referências

Aguilera, G., Nikodemova, M., Wynn, P.C., & Catt, KJ. (2004). Corticotropin releasing hormone receptors: two decades later. Peptides 25(3), 319-329.

Allis, C.D. (2006). Overview and concepts. In C.D.Allis, T. Jenuwein, & D. Reinberg (Eds.), Epigenetics (pp.23-62). New York, USA: Cold Spring Harbor Laboratory Press.

Andrade L., Caraveo-Anduaga J.J., Berglund P., Bijl R.V., De Graaf R., Vollebergh W., ...Wittchen HU.(2003). The epidemiology of major depressive episodes: results from the International Consortium

of Psychiatric Epidemiology (ICPE) Surveys. International Journal of Methods in Psychiatric Research, 12, 3–21.

Armario, A., & Nadal, R. (2013). Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity. Frontiers in Pharmacology, 4, 137.

Arrant, A.E., Jemal, H., & Kuhn, C.M. (2013).Adolescent male rats are less sensitive than adults to the anxiogenic and serotonin-releasing effects of fenfluramine. Neuropharmacology, 65, 213-222.

Bennett, M.R. (2011). The prefrontal-limbic network in depression: Modulation by hypothalamus, basal ganglia and midbrain. Progress in Neurobiology, 93(4), 468-487.

Bilang-Bleuel, A., Ulbricht, S., Chandramohan, Y., De Carli, S., Droste, S.K., & Reul, J.M. (2005). Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptordependent behavioural response. European Journal of Neuroscience, 22(7), 1691-1700.

Casey, B.J., Jones, R.M., &Hare, T.A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111-126.

Chandramohan, Y., Droste, S.K., Arthur, J.S., & Reul, J.M. (2008).The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D- spartate/extracellular signalregulated kinase/mitogen- and stress-activated kinase signalling pathway. European Journal of Neuroscience, 27(10), 2701-2713.

Consejo Nacional de la Niñez y la Adolescencia. (2009). VII Estado de los derechos de la niñez y la adolescencia en Costa Rica.

Dalton, V.S., Kolshus, E., & McLoughlin, D.M. (2014). Epigenetics and depression: return of the repressed. Journal of Affective Disorders, 155, 1-12.

Dipietro, J.A. (2012). Maternal stress in pregnancy: considerations for fetal development. Journal of Adolescent Health, 51(2 Suppl), S3-S8.

Harro, J. (2010). Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology. Pharmacology & Therapeutics, 125(3), 402-422.

Hirschfeld, R.M. (2001). The Comorbidity of Major Depression and Anxiety Disorders: Recognition and Management in Primary Care. The Primary Care Companion to the Journal of Clinical Psychiatry, 3(6), 244-254.

Jankord, R., Solomon, M.B., Albertz, J., Flak, J.N., Zhang, R., & Herman, J.P. (2011). Stress vulnerability during adolescent development in rats. Endocrinology, 152(2), 629-638.

Kaikkonen, M.U., Lam, M.T., & Glass, C.K. (2011). Noncoding RNAs as regulators of gene expression and epigenetics. Cardiovascular Research, 90(3), 430-440.

Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., … Wang, P.S. (2003). National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 289, 3095–3105.

Lee, B.H., & Kim, Y.K. (2010). The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investigation, 7(4), 231-235.

Lépine, J.P., & Briley, M. (2011). The increasing burden of depression. Journal of Neuropsychiatric Disease and Treatment, 7(Suppl 1), 3-7.

Fattore, L., Piras, G., Corda, M.G., & Giorgi, O. (2009). The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology, 34, 1091–1101.

Grammatopoulos, D.K., & Chrousos, G.P. (2002). Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends in Endocrinology & Metabolism, 13, 436–444.

Lemos, J.C., Wanat, M.J., Smith, J.S., Reyes, B.A., Hollon, N.G., Van Bockstaele, E.J. & Phillips, P.E. (2012). Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 490 (7420), 402-406.

Mandt, B.H., Allen, R.M., & Zahniser, N.R. (2009). Individual differences in initial low-dose cocaineinduced locomotor activity and locomotor sensitization in adult outbred female Sprague– Dawley rats. Pharmacology Biochemistry and Behavior, 91, 511–516.

Meaney, M.J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7 (2), 103-123.

Moore, L.D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38 (1), 23-38.

Muschamp, J.W., Van’t Veer, A., Parsegian, A., Gallo, M.S., Chen, M., Neve, R.L., Carlezon, W.A. Jr. (2011). Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats. Journal of Neuroscience, 31, 3095–3103.

Naudon, L., & Jay, T.M. (2005). Opposite behaviours in the forced swimming test are linked to differences in spatial working memory performances in the rat. Neuroscience, 130 (2), 285-293.

Pawlak, C.R., Ho, Y.J., & Schwarting, R.K. (2008). Animal models of human psychopathology based on individual differences in novelty-seeking and anxiety. Neuroscience & Biobehavioral Reviews, 2 (8), 1544-1568.

Peciña, S., Schulkin, J., & Berridge, K.C. (2006). Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biology, 4, 8.

Porsolt, R.D., Le Pichon, M., & Jalfre, M. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266, 730–732.

Riggs, A.D., Martienssen, R.A., & Russo, V.E.A. (1996). Introduction. In V.E.A. Russo, R.A. Martienssen, A.D. Riggs, & A.D. Briggs AD (Eds.), Epigenetic mechanisms of gene regulation (pp. 1-4). New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Rock, P.L., Roiser, J.P., Riedel, W.J., &Blackwell, A.D. (2013). Cognitive impairment in depression: a systematic review and meta-analysis. Psychological Medicine, 29, 1-12.

Rupniak, N.M. (2003). Animal models of depression: challenges from a drug development perspective. Behavioural Pharmacology, 14(5-6), 385-390.

Schneider, M. (2013). Adolescence as a vulnerable period to alter rodent behavior. Cell and Tissue Research, 354(1), 99-106.

Schwarting, R.K.W., Thiel, C.M., Muller, C.P., & Huston, J.P. (1998). Relationship between anxiety and serotonin in the ventral striatum. Neuroreport, 9, 1025–1029.

Sequeira A, & Fornaguera, J. (2009). Neurobiología de la depresión. Revista Mexicana de Neurociencias, 10(6), 462-478.

Sequeira-Cordero, A., Mora-Gallegos, A., Cuenca-Berger, P., & Fornaguera-Trías, J. (2013). Individual differences in the immobility behavior in juvenile and adult rats are associated with monoaminergic neurotransmission and with the expression of corticotropin-releasing factor receptor 1 in the nucleus accumbens. Behavioral Brain Research, 252, 77-87.

Sequeira-Cordero, A., Mora-Gallegos, A., Cuenca- Berger, P., & Fornaguera-Trías, J. (2014a). Individual differences in the forced swimming test and neurochemical kinetics in the rat brain. Physiology &

Behavior, 128C, 60-69.

Sequeira-Cordero, A., Mora-Gallegos, A., Cuenca-Berger, P., & Fornaguera-Trías, J. (2014b). Individual differences in the forced swimming test and the effect of environmental enrichment: Searching for an interaction. Neuroscience, 265C, 95-107.

Shishkina, G.T., Kalinina, T.S., Berezova, I.V., Bulygina, V.V., & Dygalo, N.N. (2010). Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated

hippocampal Bcl-xl expression. Behavioral Brain Research, 213 (2), 218-224.

Shumake, J., Barrett, D., & Gonzalez-Lima, F. (2005). Behavioural characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear

memories. Behav Brain Res, 164, 222–230.

Shumake, J., Edwards, E., & Gonzalez-Lima, F. (2002). Dissociation of septo-hippocampal metabolism in the congenitally helpless rat. Neuroscience, 114, 373–377.

Shumake, J., Poremba, A., Edwards, E., & Gonzalez- Lima, F. (2000). Congenital helpless rats as a genetic model for cortex metabolism in depression. Neuroreport, 11, 3793–3798.

Simpson, J., & Kelly, J.P. (2011). The impact of environmental enrichment in laboratory rats: behavioural and neurochemical aspects. Behavioral Brain Research, 222(1), 246-264.

Slattery, D.A., & Cryan, J.F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009-1014.

Suganuma, T., & Workman, J.L. (2011). Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 80, 473-499.

Sun, M.K., & Alkon, D.L. (2008). Effects of age on susceptibility to the induction of depressive behavior and imipramine in rats. Behavioural Pharmacology, 19(4), 334-338.

Taghzouti, K., Lamarque, S., Kharouby, M., & Simon, H. (1999). Interindividual differences in active and passive behaviors in the forced-swimming test: implications for animal models of psychopathology. Biological Psychiatry, 45, 750-758.

Topic, B., Oitzl, M.S., Meijer, O.C., Huston, J.P., &de Souza Silva, M.A. (2008). Differential susceptibility to extinctioninduced despair and age-dependent alterations in the hypothalamic-pituitary-adrenal axis and neurochemical parameters. Neuropsychobiology, 58 (3-4), 138-153.

Vaissière, T., Sawan, C., & Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research, 659(1-2), 40-48.

Villanueva, R. (2013). Neurobiology of major depressive disorder. Neural Plasticity, 2013, 873278. Doi:org/10.1155/2013/873278

Walsh, R.N., Cummins, R.A. (1976). The Open-Field Test: a critical review. Psychological Bulletin, 83 (3), 482-504.

Weiss, J.M., Cierpial, M.A., &West, C.H. (1998). Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacology Biochemistry and Behavior, 61, 49–66.

Yu, H., & Chen, Z.Y. (2011). The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacologica Sinica, 32 (1), 3-11.

Zhang, T.Y., & Meaney, M.J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439-466.

Zhou, H., Hu, H., & Lai, M. (2010). Non-coding RNAs and their epigenetic regulatory mechanisms. Biology of the Cell, 102 (12), 645-655.

Comentários

Downloads

Não há dados estatísticos.