Agronomía Costarricense ISSN Impreso: 0377-9424 ISSN electrónico: 2215-2202

OAI: https://revistas.ucr.ac.cr/index.php/agrocost/oai
Kerosene biodegradation in the grasses’ rizosphere under greenhouse conditions
PDF (Español (España))

Keywords

hydrocarbons
contamination
grasses
microbial populations
hidrocarburos
contaminación
gramíneas
poblaciones microbianas

How to Cite

García, E., Ferrera, R., Almaráz, J. J., Rodríguez, R., & García, E. (2013). Kerosene biodegradation in the grasses’ rizosphere under greenhouse conditions. Agronomía Costarricense, 37(2). https://doi.org/10.15517/rac.v37i2.12771

Abstract

Kerosene affects in a negative way the soil biological activity, also the growth and development of the plant. To examine the aforesaid, this contaminant was evaluated in oats plants (Avena sativa), barley (Hordeum vulgare), grass (Chloris gayana) and wheat (Triticum aestivum), in the microbial populations of the rizosphere and rhizoplane. Also determined was the contaminant’s degradation percentage in the rizospheric soil of the different grasses. A completely at random experimental design with a 2x4 factorial arrangement, was used, with 8 treatments and 5 repetitions each. The factors were kerosene doses (0 and 2000 mg.kg -1) and plant species. At 56 days after establishment of the experiment, the contaminated soil reduced significantly (p≤0.05), the foliar area, the total dry matter and the root volume of the 4 grasses, compared to those established in soil without contamination. In the contaminated soil the total microbial populations in the rhizoplane and the plant rizosphere increased; while those that used the hydrocarbon as carbon source increased in the rhizoplane. The mycorrhizal colonization went from 28.8 to 15.7%, and when the soil was contaminated it was reduced from 11.4 to 5%; however, the endomycorrizal fungus performed its functions even with the hydrocarbon present in the soil. The oats rizosphere allowed a kerosene degradation of 84.4%, while that of the grass only 39.6%. It is convenient to expand the rizospheric studies with another organic contaminant, to determine the oats’ rizospheric effectiveness and to evaluate if the hydrocarbon is accumulated in its tissues.
https://doi.org/10.15517/rac.v37i2.12771
PDF (Español (España))

References

AGARRY S.E., OWABOR C.N., YUSUF R.O. 2010. Studies on biodegradation of kerosene in soil under different bioremediation strategies. Bioremediation J. 14:135-141.

ALARCÓN A., DELGADILLO J., FRANCO A., DAVIES F.T., FERRERA C.R. 2006. Influence of two polycyclic aromatic hydrocarbons on spore germination, and phytoremediation potential of Gigaspora margarita-Echynochloa polystachya symbiosis in benzo[a]pyrene-polluted substrate. Rev. Int. Contam. Ambient. 22(1):39-47.

CHAÍNEAU C.H., MOREL J.L., OUDOT J. 2000. Bioremediation and biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J. Environ Qual. 29:569-578.

CHEN J., XU Q.X., SU Y., SHI Z.Q., HAN F.X. 2013. Phytoremediation of organic polluted soil. J. Bioremed. Biodeg. 4:132-134.

CLARK F.E. 1965. Agar plate method for total microbial count, pp. 1460-1466. In: C.A. Black (ed.). Methods of soil analysis. Agronomy Nº. 9. Part 2. American Society of Agronomy. Madison, WI.

DIAB E.A. 2008. Phytoremediation of oil contaminated desert soil using the rhizosphere effects of some plants. Res. J. Agricul. Biol. Sci. 4:604-610.

DIARIO OFICIAL DE LA FEDERACIÓN (DOF). 2002. NOM-021-RECNAT-2000. Norma oficial Mexicana que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreos y análisis. 31 de diciembre 2002. 85 p.

ETUK C.U., JHON R.C., EKONG U.E., AKPAN M.M. 2012. Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria. Bull. Environ. Contam. Toxicol. 89:727-732.

GARCÍA E.G., CALVA C.G., FERRERA C.R., FERNÁNDEZ L.L.C., RODRÍGUEZ V.R., ESPARZA G.F.J. 2009. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source. Arch. Microbiol. 191:275-281.

GARCÍA MA.G., INFANTE C., LÓPEZ L. 2012. Biodegradación de un crudo mediano en suelos de diferente textura con y sin agente estructurante. Bioagro 24:93-102.

GASPAR M.L., CABELLO M.N., CAZAU M.C., POLLERO R.J. 2002. Effect of phenanthrene and Rhodotorula glutinis on arbuscular mycorrhizal fungus colonization of maize roots. Mycorrhiza 12:55-59.

GHULAM S., AFZAL M., ANWAR F., TAHSEEN R., KHALID Z. M. 2008. Biodegradation of kerosene in soil by a mixed bacterial culture under different nutrient conditions. Inter. Biodeterioration and Biodegradation 61:161-166.

HERNÁNDEZ A.E., FERRERA R., RODRÍGUEZ R. 2003. Bacterias de vida libre fijadoras de nitrógeno atmosférico en rizósfera de frijol contaminada con queroseno. Terra Latinoamericana 21:81-89.

HONG S.H., RYU H.W., KIM J., CHO K.S. 2011. Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22:593-601.

JHON R.C., OKPOKWASILI G.C. 2012. Crude oildegradation and plasmid profile of nitrifying bacteria isolated from oil-impacted mangrove sediment in the Niger Delta of Nigeria. Bull. Environ. Contam. Toxicol. 88:1020-1026.

JONER E.J., LEYVAL C. 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grow together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:155-159.

KABELITZ N., MACHACKOVA J., IMFELD G., BRENNEROVA M., HEIPPIEPER D.H., JUNCA H. 2009. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl. Microbiol. Biotechnol. 82:565-577.

KALME S., PARSHETTI G., GOMARE S., GOVINDWAR S. 2008. Diesel and kerosene degradation by Pseudomonas desmolyticum NCIM 2112 and Nocardia hydrocarbonoxydans NCIM 2386. Curr. Microbiol. 56:581-586.

MARQUES A.P.G.C., PIRES C., MOREIRA H., RANGEL A.O.S.S., CASTRO P.M.L. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42:1229-1235.

MARTÍNEZ M.MA.R., DELGADILLO J., ALARCÓN A., FERRERA C.R. 2007. Degradación de fenantreno por microorganismos de la rizósfera del pasto alemán. Terra Latinoamericana 25:25-33.

MIKESKOVÁ H., NOVOTNÝ C., SVOBODOVÁ K. 2012. Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl. Microbiol. Biotechnol. 95:861-870.

MORALES P.J.L. 1969. Propagación de hongos filamentosos en fracciones del petróleo. Tesis profesional. Instituto Politécnico Nacional, México, D.F. 80 p.

MURATOVA A.Y., TURKOVSKAYA O.V., ANTONYUK L.P., MAKAROV O.E., POZDNYAKOVA L.I., IGNATOV V.V. 2005. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 74:210-215.

PARKINSON D. 1982. Filamentous fungi, pp. 949-953. In: A.L. Page (ed.). Methods of soil analysis. Agronomy 9. Part 2. American Society of Agronomy. Madison, WI.

PÉREZ V.J., POGGI H.M., CALVA G., RÍOS E., RODRÍGUEZ R., FERRERA R., ESPARZA F. 2000. Nitrogen-fixing bacteria capable of utilizing kerosene hydrocarbon as a sole carbon source. Water Sci. Technol. 42:407-410.

PÉREZ A.B., CASTAÑEDA A., CASTELLANOS G., JIMÉNEZ T., TAPIA A., MARTÍNEZ D. 2010. Efecto del antraceno en la estimulación del crecimiento en maíz y frijol. Terra Latinoamericana 29:95-102.

PHILLIPS J.M., HAYMAN D.S. 1970. Improved procedures clearing roots and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161.

QUIÑONES A.E.E., FERRERA C.R., GAVI R.F., FERNÁNDEZ L.L., RODRÍGUEZ R., ALARCÓN A. 2003. Emergence and growth of maize in a crude oil polluted soil. Agrociencia 37:585-594.

RENNIE R.J. 1981. A single medium for isolation of acetylenereducing (dinitrogen-fixing) bacteria from soils. Can. J. Microbiol. 27:8-14.

RITCHIE G.D., STILL R.K., ROSS J., BECKKEDAL V.Y.M., BOBB J.A., ARFSTEN P.D. 2003. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. J. Toxicology and Environ. Health. Part B. 6:357-451.

STATPOINT TECHNOLOGIES. 2011. Statgraphics Centurion XVI. Software estadístico versión en español. United States.

THOMPSON O.A., DUANE C.W., MATTICE J.D., THOMA G.J. 2008. Influence of nitrogen addition and plant root parameters on phytoremediation of pyrenecontaminated soil. Water Air Soil Pollut. 189:37-47.

VERDIN A., SAHRAOUI L., FONTAINE J., GRANDMOUGIN A., DURAND R. 2006. Effects of anthracene on development of a arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza 16:397-405.

WILD S.R., WATERHOUSE K.S., McGRATH S.P., JONES K.C. 1990. Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 24:1706-1711.

YATEEM A., BALBA A.T., NAWAWY A.S., AL-AWANDHI N. 2000. Plants associated microflora and the remediation of oil-contaminated soil. Int. J. Phytorem. 2:183-191.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2016 Agronomía Costarricense

Downloads

Download data is not yet available.