Agronomía Costarricense ISSN Impreso: 0377-9424 ISSN electrónico: 2215-2202

OAI: https://revistas.ucr.ac.cr/index.php/agrocost/oai
Encapsulation of entomopathogenic nematodes in polymer-based materials and their effect on <i>Galleria mellonella</i>
HTML (Español (España))
PDF (Español (España))
EPUB (Español (España))

Keywords

Heterorhabditis
encapsulation
calcium alginate
entomopathogenic nematodes.
Heterorhabditis
encapsulado
alginato de calcio
nematodos entomopatógenos.

How to Cite

Bogantes, D., Flores, L., Castellón, E., & Uribe, L. (2018). Encapsulation of entomopathogenic nematodes in polymer-based materials and their effect on <i>Galleria mellonella</i>. Agronomía Costarricense, 42(2). https://doi.org/10.15517/rac.v42i2.33774

Abstract

The entomopathogenic nematodes (EPN) Heterorhabditis are used for the biological control of insect pests, most of the applications of these organisms involve the use of abundant water and do not involve protection against unfavorable environmental conditions; for this reason, there is a need to develop formulations that facilitate the application and extend the life span of these organisms. Encapsulating nematodes in hydrogels or capsules is a promising alternative to increase the viability of Heterorhabditis sp. Twentythree different formulations from biopolymers pectin, carboxymethylcellulose (CMC), alginate and gelatin were evaluated; 15 of these formed capsules. Hydrogels prepared from 2.0% alginate, 4.2% pectin and 2.2% CMC were chosen since they presented the best conditions regarding shape, ability to retain nematodes and consistency. Alginate was chosen from these materials because of its characteristics of viability of the nematodes and absence of contamination. The retention and viability of infective juveniles (JI) were evaluated at 2%, 3% and 4% alginate concentrations, with alginate capsules at 2% showing the best results. When the ability of these capsules to infect larvae of Galleria mellonella was determined, it was found that an increase in the concentration (JI. ml-1) and the dose (Capsules.larva-1) caused an increase in the percentage of infection. Finally, it was determined that the LD50% corresponded to 2.9 capsules.larva-1.
https://doi.org/10.15517/rac.v42i2.33774
HTML (Español (España))
PDF (Español (España))
EPUB (Español (España))

References

Amador, M; Molina, D; Guillen, C; Parajeles, E; Jiménez, K; Uribe, L. 2015. Utilización del nematodo entomopatógeno Heterorhabditis atacamensis CIA-NE07 en el control del picudo del banano Cosmopolites sordidus en condiciones in vitro. Agronomía Costarricense 39(3):47-60.

Bilgrami, A; Gaugler, R. 2007. Effects of various stress factors on heat tolerance by Heterorhabditis bacteriophora and Steinernema carpocapsae. Nematology 9(2):161-167.

Boemare, N. 2002. Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In Gaugler, R (ed.). Entomopathogenic nematology. NJ., USA. CABI. p. 35-56.

Burnell, A; Stock, P. 2000. Heterorhabditis, Steinernema and their bacterial symbiont- letal pathogens of insects. Nematology 2(1):31-42.

Cabané, P; Alvo, A; Neira, A; Caviedes, P; Gace, P. 2011. Microencapsulación de células y tejido para terapia celular. Revista chilena de cirugía 63(1):110-113.

Costas, L; Bosio, VE; Pandey, A; Castro, GR. 2008. Effects of organic solvents on immobilized lipase in pectin microspheres. Biotechnol. 151:578-586.

Crouse, J; Mahuta, K; Mikulski, B; Harvestine, J; Guo, X; Lee, J; Kaltchev, M; Midelfort, K; Tritt, C; Chen, J; Zhang, W. 2015. Development of a microscale red blood cell-shaped pectin-oligochitosan hydrogel system using an electrospray-vibration method: preparation and characterization. Journal of Applied Biomaterials y Functional Materials 13(4):326-331.

Cruz-Martínez, H; Ruiz-Vega, J; MatadaMas-Ortíz, PT; Cortés-Martínez, CI; Rosas-Díaz, J. 2017. Formulation of Entomopathogenic Nematodes for Crop Pest Control – a Review. Plant Protect. Sci. 53(1):15-24.

Das, S; Chaudhury, A; Ng, Ka-Yun. 2011. Polyethyleneiminemodified pectin beads for colon-specific drug delivery: In vitro and in vivo implications. Journal of Microencapsulation 28(4):268-279.

Davidson, DW; Verma, MS; Gu, FX. 2013. Controlled root targeted delivery of fertilizer using an ionically crosslinked Carboxymethyl Cellulose hydrogel matrix. Springerplus 2:318.

Ehlers, RU. 2001. Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology 56(6):623-633. Gardner, SL; Stock, SP; Kaya, HK. 1994. A new species of Heterorhabditis from the Hawaiian islands. The Journal of parasitology 80(1):100-106.

Goud, S; Hugar, PS; Prabhuraj, A. 2010. Effect of temperature, population density and shelf life of EPN Heterorhabditis indica (RCR) in sodium alginate gel formulation. Journal of Biopesticides 3(3):627-632.

Georgis, R. 1992. Present and future prospects for entomopathogenic nematode products. Biocontrol Science and Technology 2:83-99.

Gowen, S; Hague, N. 2002. Nematode control of pests. In Pimentel, D. (eds.). Encyclopedia of Pest Management. CRC Press. p. 526-529.

Grewal, PS. 2002. Formulation and application technology. In Gaugler R. (ed.). Entomopathogenic Nematology. Oxfordshire, USA, CABI. p. 265-287.

Grewal, PS; Peters, A. 2005. Formulation and Quality. In Grewal, S; Ehlers, RU; Shapiro-ilan, DI (eds.). Nematodes as Biocontrol Agents. USA, Cabi Publishing. p. 79-89.

Gulcu, B; Ulug, D; Hazir, C; Karagoz, M; Hazir, S. 2014. Biological control potential of native entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) against Spodoptera cilium (Lepidoptera: Noctuidae) in turfgrass. Biocontrol Science and Technology 24(8):965-970.

Hegazi, E; Aamer, N; Atwa, A; Ali, S; Hafez, M. 2012. Egyptian Journal of Biological Pest Control 22(1):55-60.

Hazir, S; Kaya, HK; Stock, SP; Keskin, N. 2004. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turkish Journal of Biology 27(4):181-202.

Helgerud, T; Ga ̊Serød, O; Fjæreide, T; Andersen, PO; Larsen, CK. 2010. Food Stabilisers, Thickeners and Gelling Agents: Alginates. ed. AImeson. United States of America, Wiley-Blackwell. p. 50-69.

Hiltpold, I. 2015. Prospects in the Application Technology and Formulation of Entomopathogenic Nematodes for Biological Control of Insect Pests. In Campos, R. (ed.). Nematode Pathogenesis of Insects and Other Pests. Springer International. p. 187-205.

Hussein, M; Abdel-Aty, MA. 2012. Formulation of two native entomopathogenic nematodes at room temperature. Journal of Biopesticides 5:23-27.

Jacas, J; Caballero, P. 2007. El control biológico de plagas y enfermedades. España, Universitat Jaume I. p. 87-93.

Kaya, HK; Nelsen, CE. 1985. Encapsulation of Steinernematid and Heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environmental Entomology 14:572-574.

Kennedy, JF; Melo, EHM; Crescenzi, V; Dentini, M; Matricardi. P. 1992. A rapid quantitative determination of pectin and carboxymethyl cellulose in solution using poly (hexamethylenebiguanidinium chloride. Carbohydrate Polymers 17(3):199-203.

Kumar, A; Harjinder, S. 2007. Recente advances in microencapsulation of probiotics for industrial applications and targetes delivery. Food Science and Technology 18:240-251.

Madziva, H; Kailasapathy, K; Phillips, M. 2005. Alginate– pectin microcapsules as a potential for folic acid delivery in foods. Journal of Microencapsulation 22(4):343-351.

Mahmoud, MF. 2014. Virulence of Entomopathogenic Nematodes against the Jasmine Moth, Palpita unionals Hb. (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control 24(2):393-397.

Mandal, J; Pattnaik, S; Chand, PK. 2000. Alginate encapsulation of axillary buds of Ocimum americanum l. (hoary basil), 0. basilicum l. (sweet basil), O. gratissimum l. (shrubby basil), and O. sanctum l. (sacred basil). In Vitro Cellular & Developmental Biology. Plant. 36(4):287-292.

Mujica, PA. 2006. Formulación de la cepa S 111 de Serratia liquefaciens (Grimes y Hennerty 1931) Bascomb et al. 1971, en matrices de alginato y su efectividad para inhibir in vitro a Rhizoctonia solani Kühn. Tesis Lic. Valdivia, Chile, Universidad Austral de Chile. 120 p.

Mussinovitch, A; Hirashima, M. 2013. Cooking Innovations: Using hydrocolloids for thickening, gelling, and emulsification. U.S. CRC Press. p. 69-76.

Ngoma, L; Mwanza, M; Adegboye, MF. 2016. Entomopathogenic Nematodes for Insect Control, Distribution and Applicability in South Africa. Egyptian Journal of Biological Pest Control 26(1):175-184.

Nguyen, K; Hunt, D. 2007. Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. USA, Brill Academic Pub. 816 p.

Peters, A. 2014. Formulation of Nematodes. In Glare, TR; Moran-Diez, ME. (eds.). Microbial-Based Biopesticides: Methods and Protocols. New York, USA, Springer. p. 121-135.

Reyes, ME; González, VA; Luna, JF. 2011. Uso de carboximetilcelulosa como matriz polimérica en la síntesis de nuevos materiales híbridos. Ciencia UANL. 4:459-465.

Rodríguez, D; Torres, M; Uribe, L; Flores, L. 2009. Susceptibilidad de los estadios L2 y L3 de Phyllophaga elenans a una cepa nativa de Heterorhabditis sp. en condiciones de invernadero. Agronomía Costarricense 33(2):171-182.

Rumbos, CI; Athanassiou, CG. 2017. The use of entomopathogenic nematodes in the control of stored-product insects. J Pest Sci. 90:39-49.

Saiprasad, GVS; Polisetiy, R. 2003. Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cellular & Developmental Biology. Plant. 39(1):42-48.

San-Blas, E. 2013. Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980–2010. Biological Control 66:102-124.

Shapiro-Ilan, DI; Gouge, DH; Piggott, SJ; Fife, JP. 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control 38(1):124-133.

Shapiro-Ilan, DI; Han, R; Dolinksi, C. 2012. Entomopathogenic Nematode Production and Application Technology. The Journal of Nematology 44:206-217.

Singh, AK; Sharma, M; Varshney, R; Agarwal, SS; Bansal, KC. 2006. Plant regeneration from alginateencapsulated shoot tips of Phyllanthus amarus schum and thonn, a medicinally important plant species. In Vitro Cellular & Developmental Biology. Plant. 42(2):109-113.

Soler, DM; Gómez, L; Sánchez, L. 2003. Formulación de nematodos entomopatógenos. Revista de Protección Vegetal 18(1):9-10.

Solórzano, P. 2014. Embriogénesis somática y producción de semilla artificial de papaya (Carica papaya) híbrido “Pococí”. Tesis Lic. San José, Costa Rica, Universidad de Costa Rica. 45 p.

Stock, SP; Pryor, BM; Kaya HK. 1999. Distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in natural habitats in California, USA. Biodiversity & Conservation 8(4):535-549.

Tofangsazi, N; Cherry, RH; Arthurs, SP. 2014. Efficacy of commercial formulations of entomopathogenic nematodes against tropical sod webworm, Herpetogramma phaeopteralis (Lepidoptera: Crambidae). Journal of Applied Entomology 138:656-661.

Vashisth, S; Chandel, YS; Sharma, PK. 2013. Entomopathogenic nematodes. Agricultural Reviews 34(3):163-175.

Yul, H; Myeong, S; Woon, D; Huan, H. 2011. Ecology of entomopathogenic nematodes. In Borgio, JF; Sahayara K; Susurluk IA. (eds.). Microbial Insecticides: Principles and Application. Nova Science Publishers. p. 150-180.

Wenzel, I; Filho, A; Giordano, I; Denadae, B; Fernandes, J; Forim, M. 2017. Compatibility of polymers to fungi Beauveria bassiana and Metarhizium anisopliae and their formulated products stability. Acta Scientiarum Agronomy 39(4):457-464.

Comments

Downloads

Download data is not yet available.