Identification of lead- resistant endophytic bacteria isolated from rice.

Authors

  • Alexander Pérez-Cordero Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.
  • Zafiro Barraza-Roman Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.
  • Dalila Martínez-Pacheco Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.

DOI:

https://doi.org/10.15517/am.v26i2.19281

Keywords:

Oryza sativa, endophytic microorganisms, phytoremediation.

Abstract

 

 The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue) was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO3)2. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO3)2. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

Downloads

Download data is not yet available.

References

Abou-Shanab, R.A.I., J.S. Angle, and R.L. Chaney. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils, Soil Biol. Biochem. 38:2882-2889.

Andreote, F.D., W.L. Araujo, J.L. Azevedo, E.J. Van, U. Nunes, and O.L. Van. 2009. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophytic, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 75:3396-3406.

Aliye, N., Fininsa, C., and Y. Hiskias. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol. Control 47:282-288.

Araujo, W. L., J. Marcon, W.J. Maccheroni, E.J. Van, J.W. Van, and J.L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:4906-4914.

Banat, K.M., F. Howari, and A.A. Al-Hamad. 2005. Heavy metals in urban soils of Central Jordan: should we worry about their environmental risks. Environ. Res. 97:258-273.

Barac, T.S., B. Taghavi, A. Borremans, L. Provoost, J.V. Oeyen, J. Colpaert, D. Vangronsveld, and L. Van der. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22:583-588.

Chehregani, A., M. Noori, and H.L. Yazdi. 2009. Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol. Environ. Safe. 72:1349-1353.

Cheng, F., N. Zhao, H. Xu, Y. Li, W. Zhang, and Z. Zhu. 2006. Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci. Total Environ. 359:156-66.

Chun-Yu, J., S. Xia-fang, Q. Meng, and W. Qing-Ya. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):57-64.

Darling, C.T.R., and V.G. Thomas. 2005. Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility. Sci. Total Environ. 346:70-80.

Dauvin, J.C. 2008. Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary. Mar. Pollut. Bull. 57:160-167.

Flora, S.J.S., M. Mittal, and A. Mehta. 2008. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J. Med. Res. 128:501-523.

Guitart, R., y T. Vernon. 2005. Es el plomo empleado en deportes (caza, tiro y pesca deportiva) un problema de salud pública infravalorado?. Rev. Esp. Salud Pública 79:621-632.

Haque, N., J.R. Peralta-Videa, G.L. Jones, T.E. Gill, and J.L. Gardea-Torresdey. 2008. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA, Environ. Pollut. 153:362-368.

Hardoim, P.R., F.D. Andreote, B. Reinhold-Hurek, A. Sessitsch, O.L. Van, and E.J. Van. 2011. Rice root associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77:154-164.

Kamala-Kannan, S., and R. Krishnamoorthy. 2006. Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury – a case study in Pulicat Lake north of Chennai, south east India. Sci. Total Environ. 367:341-353.

Kotrba, P., J. Najmanova, T. Macek, T. Ruml, and M. Mackova. 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27:799-810.

Labare, M.P., M.A. Butkus, D. Riegner, N. Schommer, and J. Atkinson. 2004. Evaluation of lead movement from the abiotic to biotic at a small-arms firing range. Environ. Geol. 46:750-754.

Liu, J., X. Ma, M., Wang, and X. Sun. 2013. Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicol Environ Saf. 90:35-40.

MADR e IICA (Ministerio de Agricultura y Desarrollo Rural e Instituto Interamericano de Cooperación para la Agricultura). 2005. La competitividad de las cadenas productivas en Colombia. Análisis de su estructura y dinámica (1991-2004). MADR, Bogotá, COL.

Meng, Li., Ch. Xiaohui, and G. Hongxian. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 76:81-85.

Mielke, H.W., E.T. Powell, C.R. Gonzales, and J.P.W Mielke. 2007. Potential lead on play surfaces: evaluation of the “PLOPS” sampler as a new tool for primary lead prevention. Environment Research. 103:154-159.

Mielke, H.W., M.A.S. Laidlaw, and C.R. Gonzales. 2011. Estimation of leaded (Pb) gasoline’s continuing material and health impacts on 90 US urbanized areas. Environ. Int. 37:248-257.

Migliorini, M., G. Pigino, N. Bianchi, F. Bernini, and C. Leonzio. 2004. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 129:331-40.

Mocali, S., E. Bertelli, C. DI, A. Mengoni, A. Sfalanga, F. Viliani, A. Caciotti, and S.G. Tegli. 2003. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res. Microbiol. 154:105-114.

Naik, M.M., and S.K. Dubey. 2013. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. S. 98:1-7.

Needleman, H. 2004. Lead poisoning. Annu. Rev. Med. 55:209-22.

Nigam, A., S.P. Prashant, and P.W. Pramod. 2012. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresour. Technol. 114:484-491.

Orelio, C.C., H.W. Beiboer, M.C. Morsink, S.Tektas, H.E. Dekter, and W.B. Van Leeuwen. 2014. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification. J. Microbiol. Methods 107:126-132.

Pérez, C. A., C.C. Pérez, y A.L. Chamorro. 2013. Diversidad de bacterias endófitas asociadas a cultivo de arroz en el departamento de Córdoba-Colombia. Estudio preliminar. Rev. Colomb. Cienc. Anim. 5(1):83-92.

Pérez, C.A., S.J. Rojas, y C.J. Fuente. 2010. Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Rev. Acta Biol. Colomb. 15:1-18.

Pérez, A.C., S.A. Tuberquía, y J.D. Amell. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agron. Mesoam. 25:01-11.

Rathnayake, I.V.N., M. Mallavarapu, G.S.R. Krishnamurti, N.S. Bolan, and R. Naidu R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere 90:1195-1200.

Schwarz, K., S.T. Pickett, R.G. Lathrop, K.C. Weathers, R.V. Pouyat, and M.L. Cadenasso. 2012. The effects of the urban built environment on the spatial distribution of lead in residential soils. Environ. Pollut. 163:32-39.

Sheng, X.F., J.J. Xia, C.Y. Jiang, L.Y., He, and M. Qian. 2008. Characterization of heavy-metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156:1164-1170.

Shin, M.N., J. Shim, Y. You, H. Myung, K.S. Bang M. Cho, S.K. Kannan, and B-T Oh. 2012. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J. Hazard. Mater. 199-200:314-320.

Sinhal, V.K., Srivastava, A., and V.P. Singh. 2010. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J. Environ. Biol. 31:255-259.

Taghavi, S.T., B. Barac, B. Greenberg, J. Borremans, D. Vangronsveld, and L. Van der. 2005. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 71:8500-8505.

Tsavkelova, E.A., T.A. Cherdyntseva, S.G. Botina, and A.L. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res. 162(1):69-76.

Urzelai, A., E. Ciprián, A. Roldán, E. Cagigal, and A. Bonilla. 2003. Environmental impact and risk associated to clay target shooting ranges. Proceedings of the 8th International FZK/TNO Conference on Contaminated Soil. Gent, BEL.

Weyens, N.S., J. Croes, L.N.D. Dupae, L.R. Van der and J.V. Carleer. 2010. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut. 158:2422–2427.

Wong, C.S.C., X. Li, and I. Thornton. 2006. Urban environmental geochemistry of trace metals. Environ. Pollut. 142(1):1-16.

Xiao, X., S.L. Luo, G.M. Zeng, W.Z. Wei, Y. Wan, L. Chen, H.J. Guo, Z. Cao, L.X. Yang, J.L. Chen, and Q. Xi. 2010. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L., Bioresour. Technol. 101:1668-1674.

Yan, F.Z., Y.H. Lin, J.Ch. Zhao, H.Z. Wen, Y.W. Qing, Q. Meng, and F.S. Xia. 2011. Characterization of leadresistant and ACC desaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Hazard. Mater. 186:1720-1725.

Zhang Y.F., L.Y. He, Z.J. Chen, W.H. Zhang, Q.Y. Wang, M. Qian, and X.F. Sheng. 2011. Characterization of leadresistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 186:1720-1725.

Published

2015-06-16

How to Cite

Pérez-Cordero, A., Barraza-Roman, Z., & Martínez-Pacheco, D. (2015). Identification of lead- resistant endophytic bacteria isolated from rice. Agronomía Mesoamericana, 26(2), 257–266. https://doi.org/10.15517/am.v26i2.19281

Most read articles by the same author(s)