Identificación de bacterias endófitas resistentes a plomo, aisladas de plantas de arroz.

Autores/as

  • Alexander Pérez-Cordero Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.
  • Zafiro Barraza-Roman Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.
  • Dalila Martínez-Pacheco Universidad de Sucre, Facultad de Ciencias Agropecuarias, Laboratorio de Investigaciones Microbiológicas.

DOI:

https://doi.org/10.15517/am.v26i2.19281

Palabras clave:

Oryza sativa, microorganismos endófitos, fitoremediación.

Resumen

El objetivo de este estudio fue evaluar in vitro la resistencia de bacterias endófitas a diferentes concentraciones de plomo. El muestreo se realizó en el primer semestre de 2013, durante el cual se colectaron muestras de tejidos de variedades comerciales de arroz en etapa de macollamiento cultivadas en el municipio de Montería, Córdoba, Colombia. Cada tejido fue sometido a proceso de desinfección superficial. Se aislaron bacterias endófitas en medio de cultivo agar R2A; a partir de cada tejido se determinó la densidad poblacional (UFC/g de tejido) por el método de conteo sobre la superficie de medio R2A; la separación de morfotipos se realizó mediante la forma, color, tamaño y apariencia. Un total de 168 morfotipos fueron aislados de raíz, macolla y hoja de diferentes variedades comerciales de arroz. La prueba de resistencia a plomo se realizó in vitro, para esto se prepararon suspensiones de bacterias en fase log, se inocularon en medio mínimo con cinco concentraciones de plomo en forma de Pb(NO3)2. El ensayo se llevó a incubación con agitación por 150 rpm, a 32 °C por cinco días. Cada hora después de iniciado el ensayo se realizó lectura de la turbidimetría a 600 nm. Las bacterias mostraron la capacidad de crecer a concentraciones de 100% de Pb en forma Pb(NO3)2. La identificación con el kit API20E confirmó la presencia de Burkholderia cepacia y Pseudomonas putida, las cuales mostraron resistencia a diferentes concentraciones de plomo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abou-Shanab, R.A.I., J.S. Angle, and R.L. Chaney. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils, Soil Biol. Biochem. 38:2882-2889.

Andreote, F.D., W.L. Araujo, J.L. Azevedo, E.J. Van, U. Nunes, and O.L. Van. 2009. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophytic, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 75:3396-3406.

Aliye, N., Fininsa, C., and Y. Hiskias. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol. Control 47:282-288.

Araujo, W. L., J. Marcon, W.J. Maccheroni, E.J. Van, J.W. Van, and J.L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:4906-4914.

Banat, K.M., F. Howari, and A.A. Al-Hamad. 2005. Heavy metals in urban soils of Central Jordan: should we worry about their environmental risks. Environ. Res. 97:258-273.

Barac, T.S., B. Taghavi, A. Borremans, L. Provoost, J.V. Oeyen, J. Colpaert, D. Vangronsveld, and L. Van der. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22:583-588.

Chehregani, A., M. Noori, and H.L. Yazdi. 2009. Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol. Environ. Safe. 72:1349-1353.

Cheng, F., N. Zhao, H. Xu, Y. Li, W. Zhang, and Z. Zhu. 2006. Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci. Total Environ. 359:156-66.

Chun-Yu, J., S. Xia-fang, Q. Meng, and W. Qing-Ya. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):57-64.

Darling, C.T.R., and V.G. Thomas. 2005. Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility. Sci. Total Environ. 346:70-80.

Dauvin, J.C. 2008. Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary. Mar. Pollut. Bull. 57:160-167.

Flora, S.J.S., M. Mittal, and A. Mehta. 2008. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J. Med. Res. 128:501-523.

Guitart, R., y T. Vernon. 2005. Es el plomo empleado en deportes (caza, tiro y pesca deportiva) un problema de salud pública infravalorado?. Rev. Esp. Salud Pública 79:621-632.

Haque, N., J.R. Peralta-Videa, G.L. Jones, T.E. Gill, and J.L. Gardea-Torresdey. 2008. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA, Environ. Pollut. 153:362-368.

Hardoim, P.R., F.D. Andreote, B. Reinhold-Hurek, A. Sessitsch, O.L. Van, and E.J. Van. 2011. Rice root associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77:154-164.

Kamala-Kannan, S., and R. Krishnamoorthy. 2006. Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury – a case study in Pulicat Lake north of Chennai, south east India. Sci. Total Environ. 367:341-353.

Kotrba, P., J. Najmanova, T. Macek, T. Ruml, and M. Mackova. 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27:799-810.

Labare, M.P., M.A. Butkus, D. Riegner, N. Schommer, and J. Atkinson. 2004. Evaluation of lead movement from the abiotic to biotic at a small-arms firing range. Environ. Geol. 46:750-754.

Liu, J., X. Ma, M., Wang, and X. Sun. 2013. Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicol Environ Saf. 90:35-40.

MADR e IICA (Ministerio de Agricultura y Desarrollo Rural e Instituto Interamericano de Cooperación para la Agricultura). 2005. La competitividad de las cadenas productivas en Colombia. Análisis de su estructura y dinámica (1991-2004). MADR, Bogotá, COL.

Meng, Li., Ch. Xiaohui, and G. Hongxian. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 76:81-85.

Mielke, H.W., E.T. Powell, C.R. Gonzales, and J.P.W Mielke. 2007. Potential lead on play surfaces: evaluation of the “PLOPS” sampler as a new tool for primary lead prevention. Environment Research. 103:154-159.

Mielke, H.W., M.A.S. Laidlaw, and C.R. Gonzales. 2011. Estimation of leaded (Pb) gasoline’s continuing material and health impacts on 90 US urbanized areas. Environ. Int. 37:248-257.

Migliorini, M., G. Pigino, N. Bianchi, F. Bernini, and C. Leonzio. 2004. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 129:331-40.

Mocali, S., E. Bertelli, C. DI, A. Mengoni, A. Sfalanga, F. Viliani, A. Caciotti, and S.G. Tegli. 2003. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res. Microbiol. 154:105-114.

Naik, M.M., and S.K. Dubey. 2013. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. S. 98:1-7.

Needleman, H. 2004. Lead poisoning. Annu. Rev. Med. 55:209-22.

Nigam, A., S.P. Prashant, and P.W. Pramod. 2012. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresour. Technol. 114:484-491.

Orelio, C.C., H.W. Beiboer, M.C. Morsink, S.Tektas, H.E. Dekter, and W.B. Van Leeuwen. 2014. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification. J. Microbiol. Methods 107:126-132.

Pérez, C. A., C.C. Pérez, y A.L. Chamorro. 2013. Diversidad de bacterias endófitas asociadas a cultivo de arroz en el departamento de Córdoba-Colombia. Estudio preliminar. Rev. Colomb. Cienc. Anim. 5(1):83-92.

Pérez, C.A., S.J. Rojas, y C.J. Fuente. 2010. Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Rev. Acta Biol. Colomb. 15:1-18.

Pérez, A.C., S.A. Tuberquía, y J.D. Amell. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agron. Mesoam. 25:01-11.

Rathnayake, I.V.N., M. Mallavarapu, G.S.R. Krishnamurti, N.S. Bolan, and R. Naidu R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere 90:1195-1200.

Schwarz, K., S.T. Pickett, R.G. Lathrop, K.C. Weathers, R.V. Pouyat, and M.L. Cadenasso. 2012. The effects of the urban built environment on the spatial distribution of lead in residential soils. Environ. Pollut. 163:32-39.

Sheng, X.F., J.J. Xia, C.Y. Jiang, L.Y., He, and M. Qian. 2008. Characterization of heavy-metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156:1164-1170.

Shin, M.N., J. Shim, Y. You, H. Myung, K.S. Bang M. Cho, S.K. Kannan, and B-T Oh. 2012. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J. Hazard. Mater. 199-200:314-320.

Sinhal, V.K., Srivastava, A., and V.P. Singh. 2010. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J. Environ. Biol. 31:255-259.

Taghavi, S.T., B. Barac, B. Greenberg, J. Borremans, D. Vangronsveld, and L. Van der. 2005. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 71:8500-8505.

Tsavkelova, E.A., T.A. Cherdyntseva, S.G. Botina, and A.L. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res. 162(1):69-76.

Urzelai, A., E. Ciprián, A. Roldán, E. Cagigal, and A. Bonilla. 2003. Environmental impact and risk associated to clay target shooting ranges. Proceedings of the 8th International FZK/TNO Conference on Contaminated Soil. Gent, BEL.

Weyens, N.S., J. Croes, L.N.D. Dupae, L.R. Van der and J.V. Carleer. 2010. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut. 158:2422–2427.

Wong, C.S.C., X. Li, and I. Thornton. 2006. Urban environmental geochemistry of trace metals. Environ. Pollut. 142(1):1-16.

Xiao, X., S.L. Luo, G.M. Zeng, W.Z. Wei, Y. Wan, L. Chen, H.J. Guo, Z. Cao, L.X. Yang, J.L. Chen, and Q. Xi. 2010. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L., Bioresour. Technol. 101:1668-1674.

Yan, F.Z., Y.H. Lin, J.Ch. Zhao, H.Z. Wen, Y.W. Qing, Q. Meng, and F.S. Xia. 2011. Characterization of leadresistant and ACC desaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Hazard. Mater. 186:1720-1725.

Zhang Y.F., L.Y. He, Z.J. Chen, W.H. Zhang, Q.Y. Wang, M. Qian, and X.F. Sheng. 2011. Characterization of leadresistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 186:1720-1725.

Descargas

Publicado

2015-06-16

Cómo citar

Pérez-Cordero, A., Barraza-Roman, Z., & Martínez-Pacheco, D. (2015). Identificación de bacterias endófitas resistentes a plomo, aisladas de plantas de arroz. Agronomía Mesoamericana, 26(2), 257–266. https://doi.org/10.15517/am.v26i2.19281