The acidification process effect on the Cottage cheese color

Authors

  • Ramiro Vargas-Uscategui Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB).
  • Anthony Arenas-Clavijo Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB).
  • Juan Sebastian Ramírez-Navas Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB). http://orcid.org/0000-0002-6731-2784

DOI:

https://doi.org/10.15517/ma.v28i3.22876

Keywords:

processed cheese, milk products, lactic fermentation, cheese making, preservatives.

Abstract

The objective of this study was to evaluate the color change of cottage cheese made with different processes of acidification (enzymatic and chemical) over time. The research was conducted at Universidad del Valle (Cali, Colombia) laboratories, between 2014 and 2015. Microbial rennet and lactic culture (CC) were used for enzymatic coagulation method (control cheese), and solutions of citric acid (CA) and phosphoric acid (PA) were used for the chemical method. The physicochemical properties were determined, and color behavior was analyzed over nine days of storage. Significant differences in acidity and moisture for the three coagulants were found. In the color plane, it was observed that the final and initial points of the coordinates a * and b * are close together; changes in color were mostly due to changes in brightness. The speed at which brightness decreased in the three cheeses matches kinetics order to zero and one. The first order kinetics displayed in higher values of linear correlation coefficients (R), AC: 0.8410 ± 0.0533; AF: 0.8390 ± 0.0847, and CC: 0.8717 ± 0.0256. The kinetics of change in color also adjusted correctly to zero and the first order kinetic model; that is, no significant difference (p <0.05) between these results. However, the speed of color change for the three cheeses had a slightly higher setting for zero order kinetics, as evidenced by the linear correlation coefficient (R) results, AC: 0.8800 ± 0.0205; AF: 0.8543 ± 0.0099, and CC: 0.7982 ± 0.0605.

Downloads

Download data is not yet available.

Author Biographies

Ramiro Vargas-Uscategui, Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB).

Ingeniero de Alimentos. Escuela de Ingeniería de Alimentos, Universidad del Valle.

Anthony Arenas-Clavijo, Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB).

Ingeniero de Alimentos. Escuela de Ingeniería de Alimentos, Universidad del Valle.

Juan Sebastian Ramírez-Navas, Universidad del Valle, Escuela de Ingeniería de Alimentos, Grupo de Investigación en procesos ambientales y biotecnológicos (GIPAB).

Ingeniero Químico, Doctor en Ingeniería.

 

Profesor Asistente, Grupo GIPAB, Escuela de Ingeniería de Alimentos, Universidad del Valle.

References

AOAC (Association of Official Analytical Chemists). 1990. Official Method 920.123. Total protein via Kjeldahl method. AOAC Int., WA, USA.

AOAC (Association of Official Analytical Chemists). 1995. Official Method 926.08. Moisture in cheese. AOAC Int., WA, USA.

AOAC (Association of Official Analytical Chemists). 1997a. Official Method 923.03. Ash of flour. AOAC Int., WA, USA.

AOAC (Association of Official Analytical Chemists). 1997b. Official Method 955.30. Cheese: Preparation of test portions.

AOAC Int., WA, USA.

Álvarez, S., V. Rodríguez, M. Ruiz, y M. Fresno. 2007. Correlaciones de textura y color instrumental con la composición química de quesos de cabra canarios. Arch. Zootec. 56:663-666.

Arenas, A., R. Vargas, y J.S. Ramírez-Navas. 2015. El queso cottage. Tecnol. Láctea Latinoam. 86:54-61.

Brito, C, M. Pino, L.H. Molina, I. Molina, M. Horzella, y R. Schöbitz. 2006. Queso cottage elaborado con cultivo láctico REDI-SET y DVS, usando crema lactea homogeneizada y sin homogeneizar. Rev. Chil. Nutr. 33:74-85. doi:10.4067/S0717-75182006000100008.

Clark, S., M. Costello, M.A. Drake, and F. Bodyfelt. 2009. The sensory evaluation of dairy products. Springer, NY, USA.

Donnelly, C.W. 2004. Growth and survival of microbial pathogens in cheese. In: P.F. Fox et al., editors, Cheese: Chemistry, pysics and microbiology. Elsevier, HOL. p. 541-559.

Dufossé, L., P. Galaup, E. Carlet, C. Flamin, and A. Valla. 2005. Spectrocolorimetry in the CIE L*a*b* color space as useful tool for monitoring the ripening process and the quality of PDO red-smear soft cheeses. Food Res. Int. 38:919-924. doi:10.1016/j.foodres.2005.02.013.

Emmons, D.B., and D.C. Beckett. 1984. Effect of pH at cutting and during cooking on cottage cheese. J. Dairy Sci. 67:2200-2209. doi:10.3168/jds.S0022-0302(84)81567-2.

Fagan, C.C., M. Castillo, F.A. Payne, C.P. O’Donnell, and D.J. O’Callaghan. 2007. Effect of cutting time, temperature, and calcium on curd moisture, whey fat losses, and curd yield by response surface methodology. J. Dairy Sci. 90:4499-4512. doi:10.3168/jds.2007-0329.

Fuquay, J.W., P.F. Fox, and P.L.H. McSweeney. 2011. Encyclopedia of dairy sciences. 2nd ed. Academic Press, London, GBR.

Hallab, R., C. Kohen, M.A. Grandison, M.J. Lewis, and A.S. Grandison. 2007. Assessment of the quality of cottage cheese produced from standard and protein-fortified skim milk. Int. J. Dairy Technol. 60:69-73. doi:10.1111/j.1471-0307.2007.00319.x.

Hunter, R.S., and R.W. Harold. 1987. The measurement of appearance. 2nd ed. Wiley and Sons, Inc., NY, USA.

Johnson, M.E., and N. Olson. 1985. A comparison of available methods for determining salt levels in cheese. J. Dairy Sci. 68:1020-1024. doi:10.3168/jds.S0022-0302(85)80924-3.

Lee, Y.K. 2005. Comparison of CIELAB DeltaE(*) and CIEDE2000 color-differences after polymerization and thermocycling of resin composites. Dent. Mater. 21:768-682. doi:10.1016/j.dental.2004.09.005.

Lurueña-Martínez, M.A., I. Revilla, P. Severiano-Pérez, and A.M. Vivar-Quintana. 2010. The influence of breed on the organoleptic characteristics of Zamorano sheep’s raw milk cheese and its assessment by instrumental analysis. Int. J. Dairy Technol. 63:216-223. doi:10.1111/j.1471-0307.2010.00565.x.

Manayay, D., A. Ibarz, W. Castillo, y L. Palacios. 2013. Cinética de la diferencia de color y croma en el proceso térmico de pulpa de mango (Mangifera indica L.) variedad Haden. Sci. Agropecu. 4:181-190.

Martins, S.I., W.M. Jongen, and M.A. Van-Boekel. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 11:364-373. doi:10.1016/S0924-2244(01)00022-X.

Medina-Olivas, Z. 2013. Caracterización de quesos fresco y curado fabricados a partir de leche de cabras alimentadas con diferentes dietas. Universidad Politécnica de Valencia, Valencia, ESP.

Nollet, L.M.L., and F. Toldra. 2009. Handbook of dairy foods analysis. CRC Press, Taylor & Francis, London, GBR.

Novoa, D.M., y J.S. Ramírez-Navas. 2012. Caracterización colorimétrica de manjar blanco del Valle. Rev. Bio. Agro. 10:54-60.

Pacheco-Palencia, L. 2004. Efecto de la concentración de cultivo láctico y la acidez de corte en el tiempo de incubación y las características físicas y sensoriales del queso cabaña. Escuela Agrícola Panamericana “El Zamorano”, Zamorano, HON.

Pirovani, M., y D. Güemes. 2004. Cinética de deterioro de la calidad de repollo fresco cortado. Cienc. Tecnol. Aliment. 4:169-176. doi:10.1080/11358120409487757.

Ramírez-Navas, J.S. 2010. Espectrocolorimetría en caracterización de leche y quesos. Tecnol. Láctea Latinoam. 61:52-58.

Ramírez-Navas, J.S., and A. Rodríguez-de-Stouvenel. 2012. Characterization of Colombian quesillo cheese by spectrocolorimetry. Vitae 19:178-185.

Ramírez-Navas, J.S., J. Aguirre-Londoño, V.A. Aristizabal-Ferreira, y S. Castro-Narváez. 2017. La sal en el queso: diversas interacciones. Agron. Mesoam. 28:303-316. doi:10.15517/am.v28i1.21909.

Salinas-Hernández, R., G. González-Aguilar, M. Pirovani, y F. Ulín-Montejo. 2007. Modelación del deterioro de productos vegetales frescos cortados. Universidad y Ciencia 23:183-196.

Taoukis, P., and T. Labuza. 1989. Applicability of time-temperature indicators as shelf life monitors of food products. J. Food Sci. 54:783-788. doi:10.1111/j.1365-2621.1989.tb07882.x.

Valero, A., M. Hernández, A. De-Cesare, G. Manfreda, P. González-García, and D. Rodríguez-Lázaro. 2014. Survival kinetics of Listeria monocytogenes on raw sheep milk cured cheese under different storage temperatures. Int. J. Food Microbiol. 184:39-44. doi:10.1016/j.ijfoodmicro.2014.02.017.

Villegas-de-Gante, A. 2004. Tecnología quesera. Editorial Trillas S.A. de C.V., MEX.

Yasin, N.M.N., and S.M. Shalaby. 2013. Physiochemical and sensory properties of functional low fat cheesecake manufactured using cottage cheese. An. Agric. Sci. 58:61-67. doi:10.1016/j.aoas.2013.01.009.

Published

2017-09-01

How to Cite

Vargas-Uscategui, R., Arenas-Clavijo, A., & Ramírez-Navas, J. S. (2017). The acidification process effect on the Cottage cheese color. Agronomía Mesoamericana, 28(3), 677–690. https://doi.org/10.15517/ma.v28i3.22876