Fatty acids, ruminal fermentation, and methane production, of forage in intensive silvopastures with Leucaena.

Authors

  • Esperanza Prieto-Manrique Universidad de Sucre. Facultad de Ciencias Agropecuarias.
  • Julio Ernesto Vargas-Sánchez Universidad de Caldas. Facultad de Ciencias Agropecuarias. Departamento Sistemas de Producción.
  • Joaquín Angulo-Arizala Universidad de Antioquia. Facultad de Ciencias Agrarias, Grupo de Investigación en Ciencias Animales -GRICA.
  • Liliana Mahecha-Ledesma Universidad de Antioquia. Facultad de Ciencias Agrarias, Grupo de Investigación en Ciencias Animales -GRICA.

DOI:

https://doi.org/10.15517/am.v27i2.24386

Keywords:

conjugated linoleic acid, transvaccenic acid, Cynodon plectostachyus, Megathyrsus maximus cv. Tanzania, silvopastoral system.

Abstract

The aim of this study was to evaluate the effect of forages on the long chain fatty acids, ruminal fermentation, and methane production in an intensive silvopastoral system of Leucaena leucocephala. This study was developed in the laboratory NUTRILAB-GRICA, of the Faculty of Agricultural Sciences, University of Antioquia, Medellin-Colombia, in July 2013. The study was carried out by the in vitro gas production technique using grasses (C. plectostachyus and/or M. maximus cv. Tanzania) and leucaena (L. leucocephala) as substrate of fermentation, alone or with their combinations, with 70:30 forage:concentrate ratio and 56:14 grass: leucaena ratio for a total of seven treatments. No forage effect (p>0,05) on the conjugated linoleic fatty acid content (CLA, C18:2 c9t11) or rumenic acid, in the digesta was found. The inclusion of 14% of leucaena increased the content of linoleic (C18: 2 c9, 12) and linolenic (C18: 3 c9, 12, 15) acids in food and transvaccenic (TVA, C18: 1 t11), stearic (C18: 0), linoleic and linolenic acids in the digesta (p <0.05), and did not affect the kinetics of fermentation, digestibility of dry matter, pH, total and ratio volatile fatty acids, nor reduced methane production. Grasses, C. plectostachyus and M. maximus had a similar behavior in the evaluated variables (p>0.05). Silvopastoral systems could be an option to increase the beneficial fatty acids in milk.

 

Downloads

Download data is not yet available.

References

Addis, M., A. Cabiddu, G. Pinna, M. Decandia, G. Piredda, A. Pirisi, and G. Molle. 2005. Milk and cheese fatty acid composition of sheep fed different mediterranean forages with particular reference to CLA cis-9, trans-11. J. Dairy Sci. 88:3443-3454.

Amaro, P., M.R.G. Maia, R.J. Dewhurst, A.J.M. Fonseca, and A.R.J. Cabrita. 2012. Effects of increasing levels of stearidonic acid on methane production in a rumen in vitro system. Anim. Feed Sci. Technol. 173:252–260.

AOAC (Association of Official Analytical Chemist). 1999. Official Methods of Analysis. 16th ed. AOAC International, Gaithersburg, MD, USA.

Bach, A., S. Calsamiglia, and D. Stern. 2005. Nitrogen Metabolism in the rumen. J. Dairy Sci. 88:(E. Suppl.): E9-E21. doi:10.3168/jds.S0022-0302(05)73133-7

Barros-Rodríguez, M., J. Solorio-Sánchez, J.C. Ku-Vera, A. Ayala-Burgos, C. Sandoval-Castro, and G. Solís-Pérez. 2012. Productive performance and urinary excretion of mimosine metabolites by hairs heep grazing in a silvopastoral system with high densities of Leucaena leucocephala. Trop. Anim. Health Prod. 44:1873-1878.

Barros-Rodríguez, M., C. Sandoval-Castro, J. Solorio-Sánchez, L. Sarmiento-Franco, R. Rojas-Herrera, and A. Klieve. 2014. Review Leucaena leucocephala in ruminant nutrition. Trop. Subtrop. Agroecosyst. 17:173-183.

Beauchemin, K.A., S.M. McGinn, T.F. Martinez, and T.A. McAllister. 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85:1990-1996.

Bichi, E., P.G. Toral, G. Hervas, P. Frutos, P. Gomez-Cortes, M. Juarez, and M.A. de la Fuente. 2012. Inhibition of Δ9-desaturase activity with sterculicacid: effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-11 18:2 in dairy sheep. J. Dairy Sci. 95:5242-5252.

Cabiddu, A., M. Decandia, L. Salis, G. Scanu, M. Fiori, M. Addis, M. Sitzia, and G. Molle. 2009. Effect of species, cultivar and phonological stage of different forage legumes on herbage fatty acid composition. Ital. J. Anim. Sci. 8:277-279.

Cabiddu, A., L. Salis, J.K.S. Tweed, G. Molle, M. Decandia, and M.R.F. Lee. 2010. The influence of plant polyphenols on lipolysis and biohydrogenation in dried forages at different phenological stages: in vitro study. J. Sci. Food Agric. 90:829-835.

Carreño, D., G. Hervás, A. Belenguer, P.G. Toral, and P. Frutos. 2014. Ability of different types and doses of tannins to modulate in vitro ruminal biohydrogenation in sheep. In: Proc. Aust. Soc. Anim. Prod., editor, 30th Biennial Conference of Australian Society of Animal Production: First Joint International Symposium on the Nutrition of Herbivores/International Symposium on Ruminant Physiology (ISNH/ISRP). Canbeira, AUS. p. 157.

Chilliard, Y., F. Glasser, A. Ferlay, L. Bernard, J. Rouel, and M. Doreau. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci.Technol. 109:828-855.

CONPES (Consejo Nacional de Política Económica y Social). 2010. Política nacional para mejorar la competitividad del sector lácteo colombiano, Documento CONPES 3675, Bogotá D.C., COL.

Duque M., R. Noguera, y L.F. Restrepo. 2009. Efecto de la adición de urea protegida y sin protección sobre la cinética de degradación in vitro del pasto estrella (Cynodon nlemfluensis) y caña de azúcar (Saccharum officinarum). Livest. Res. Rural Develop. 21(4). http://www.lrrd.org/lrrd21/4/duqu21058.htm (consultado 20 nov. 2014).

France, J., J. Dijkstra, M.S. Dhanoa, S. Lopez, and A. Bannink. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. Br. J. Nutr. 83:143-150.

Galindo, J., Y. Marrero, T. Ruiz, N. González, A. Díaz, A. Aldama, O. Moreira, J. Hernández, V. Torres, y L. Sarduy. 2009. Efecto de una mezcla múltiple de leguminosas herbáceas y Leucaena leucocephala en la población microbiana y productos fermentativos del rumen de añojos mestizos de Cebú. Rev. Cubana Cienc. Agric. 43:256-264.

García, M.D., G.H. Wencomo, C.M. Gonzáles, R.M. Medina, y O.L. Cova. 2008. Caracterización de diez cultivares forrajeros de Leucaena leucocephala basada en la composición química y la degradabilidad ruminal. Rev. MVZ Córdoba 13:1294-1303.

García-González, R., S. López, M. Fernández, and J.S. González. 2008. Dose-response effects of Rheumofficinale root and Frangula alnusbark on ruminal methane production in vitro. Anim. Feed Sci.Technol. 145:319-334.

Ghosh, M.K., P.P. Atreja, R. Buragohain, and S. Bandyopadhyay. 2007. Influence of short-term Leucaena leucocephala feeding on milk yield and its composition, thyroid hormones, enzyme activity, and secretion of cattle. J. Agric. Sci. 145:407-414.

Griinari, M.K., and D.E. Bauman. 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: M.P. Yurawecz et al., editors, Advances in CLA Research, vol.1, AOCS Press, Champaign, IL, USA. p. 180-200.

Harris, W.S. 2008. Linoleic acid and coronary heart disease. PLEFA 79:169-171.

Hess, H.D., M. Kreuzer, T.E. Díaz, C.E. Lascano, J.E. Carulla, C.R. Soliva, and A. Machmüller. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 109:79-94.

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (accessed sept. 30 2009).

Jayanegara, A., E. Wina, C.R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163: 231-243.

Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

Khiaosa-Ard, R., S.F. Bryner, M.R. Scheeder, H.R. Wettstein, F. Leiber, M. Kreuzer, and C.R. Soliva. 2009. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92:177-88.

Klieve, A.V., D. Ouwerkerk, A. Turner, and R. Roberton. 2002. The production and storage of a fermentor-grown bacterial culture containing Synergistes jonesii, for protecting cattle against mimosine and 3-hydroxy-4 (1H)-pyridone toxicity from feeding on Leucaena leucocephala. Aust. J. Agric. Res. 53:1-5.

Krebsky, E.O., J.M.C. Geuns, and M. De Proft. 1996. Fatty acids in polar lipids from etiolated Cichorium intybus. Phytochemistry 43:747–751.

Lassey, K.R., M.J. Ulyatt, R.J Martin, C.F. Walker, and I.D. Shelton. 1997. Methane emissions measured directly from grazing livestock in New Zealand. Atmosph. Environ. 31:2905-2914.

Lee, M.R.F., S.A. Huws, N.D. Scollan, and R.J. Dewhurst. 2007. Effects of fatty acid oxidation products (green odor) on rumen bacterial populations and lipid metabolism in vitro. J. Dairy Sci. 90:3874-3882.

López, S., and C.J. Newbold. 2007. Analysis of methane. In: P.S. Harinder et al., editors, Measuring methane production from ruminants. Makkar, Springer, NY, USA. p. 7-10.

Mahecha L., C.V. Durán, M. Rosales, C.H. Molina, y E. Molina. 2000. Consumo de pasto estrella Africana (Cynodon plectostachyus) y leucaena (Leucaena leucocephala) en un sistema silvopastoril. Pasturas Trop. 22 (1):26-30.

Mahecha, L., J. Angulo, B. Salazar, M. Cerón, J. Gallo, C.H. Molina, J.E. Molina, J.F. Suárez, J.J. Lopera, and M. Olivera. 2008. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids. Trop. Anim. Health Prod. 40:209-216.

Makkar, H.P.S. 2003. Quantification of tannins in tree and shrub foliage. A laboratory manual. Kluwer Academic Publishers, HOL.

McDougall, E.I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43(1):99.

Mele, M., M. del Viva, A. Serra, G. Conte, and P. Secchiari. 2006. Effect of forage/concentrate ratio and soybean oil supplementation on C18:1 and CLA isomers in milk fat from Saanen goats. In: Proceedings of the 4th Euro Fed Lipid Congress, 1-4 oct. 2006, University of Madrid (UCM), ESP.

Menke, K.H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.

Minieri S., A. Buccioni, S. Rapaccini, A. Pezzati, D. Benvenuti, A. Serra, and M. Mele. 2014. Effect of quebracho tannin extract on soybean and linseed oil biohydrogenation by solid associated bacteria: an in vitro study. Ital. J. Anim. Sci. 13:604-608.

Mohammed, R., M. O’Donovan, C.S. Stanton, J.F. Mee, J.J. Murphy, D. Glimm, and J.J. Kennelly. 2006. Effect of grazed grass, zero-grazed grass and conserved grass on transvaccenic acid and cis-9, trans-11 conjugated linoleic acid concentrations in rumen, plasma and milk of dairy cows. In: Proceedings of the 4th Euro Fed Lipid Congress, 1-4 oct. 2006, University of Madrid (UCM), ESP.

Molina, I.C., J.M. Cantet, S. Montoya, G.A. Correa, y R. Barahona. 2013. Producción de metano in vitro de dos gramíneas tropicales solas y mezcladas con Leucaena leucocephala o Gliricidia sepium. Rev. CES Med. Zootec. 8(2):15-31.

Monforte-Briceño, G., C. Sandoval-Castro, L. Ramírez-Avilíes, and M. Capetillo-Leal. 2005. Defaunating capacity of tropical fodder trees: effects of polyethyleneglycol and its relationship to in vitro gas production. Anim. Feed Sci. Technol. 123/124: 313-327.

Mosley, E.E., M.K. McGuire, J.E. Williams, and M.A. McGuire. 2006. Cis-9, trans-11 conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J. Nutr. 136:2297-2301.

Moss, A.R., J.P. Jouany, and J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49:231-253.

Murgueitio, E. 1999. Environmental and social adjustment of the cattle farming sector in Colombia. World Anim. Rev. 93:2-15.

Pagiola, S., P. Agostini, J. Gobbi, C. de Haan, M. Ibrahim, E. Murgueitio, E. Ramirez, M. Rosales, and J.P. Ruiz. 2005. Paying for biodiversity conservation services - Experience in Colombia, Costa Rica, and Nicaragua. Mountain Res. Dev. 25:206-211.

Pagiola, S., E. Ramirez, J. Gobbi, C. De Haan, M. Ibrahim, E. Murgueitio, and J.P. Ruiz. 2007. Paying for the environmental services of silvopastoral practices in Nicaragua. Ecol. Econ. 64:374-385.

Palmquist, D.L. 2007. Biohydrogenation then and now. Eur. J. Lipid Sci. Technol. 109:737-739.

Patra, A.K., and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37.

Posada, S.L., R. Noguera, y D. Bolívar. 2006. Relación entre presión y volumen para la implementación de la técnica in vitro de producción de gases. Rev. Col. Cienc. Pec. 19:407-414.

Ramana, D.B.V., S. Sultan, K.R. Solanki, and A.S. Negi. 2000. Nutritive evaluation of some nitrogen and non-nitrogen fixing multipurpose tree species. Anim. Feed Sci. Tecnol. 88:103-111.

Rodríguez-Echevarría, M.E., G. Corral-Flores, B. Solorio-Sánchez, A.D. Alarcón-Rojo, J.A. Grado-Ahuir, C. Rodríguez-Muela, L. Cortés-Palacios, V.E. Segovia-Beltrán, y F.J. Solorio-Sánchez. 2013. Calidad de la carne de bovinos engordados en un sistema silvopastoril intensivo en dos épocas del año. Trop. Subtrop. Agroecosyst. 16:235-241.

Ryhänen, E., K. Tallavaara, J. Griinari, S. Jaakkola, S. Mantere-Alhonen, and K. Shingfield. 2005. Production of conjugated linoleic acid enriched milk and dairy products from cows receiving grass silage supplemented with a cereal-based concentrate containing rapeseed oil. Int. Dairy J. 15:207-217.

Salem, A.Z.M., M.Z.M. Salem, M.M. El-Adawy, and P.H. Robinson. 2006. Nutritive evaluations of some browse tree foliages during the dry season: secondary compounds, feed intake and in vivo digestibility in sheep and goats. Anim. Feed Sci. Technol. 127:251-267.

Sallam, S.M.A., I.C. da Silva Bueno, P.B. de Godoy, E.F. Nozella, D.M.S.S. Vitti, and A.L. Abdalla. 2010. Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Trop. Subtrop. Agroecosyst. 12:1-10.

SAS. 2004.Version 9.1.3. SAS Institute Inc., Cary, NC, USA.

Sheehle, E.A., and D. Kruger. 2006. Global anthropogenic methane and nitrous oxide emissions. Energy J. 27(special issue 3):33-44.

Sliwinski, B.J., M. Kreuzer, H.R. Wettstein, and A. Machmüller. 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr. 56:379-392.

Soltan, Y.A., A.S. Morsy, S.M.A. Sallam, R.C. Lucas, H. Louvandini, M. Kreuzer, and A.L. Abdalla. 2013. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch. Anim. Nutr. 67:169-184.

Tan, H.Y., C.C. Sieo, N. Abdullah, J.B. Liang, and X.D. Huang. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193.

Tavendale, M.H., L.P. Meagher, D. Pacheco, N. Walker, G.T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123/124:403-419.

Tequin-Ocampo, E.B. 2014. Estudio de la influencia de la suplementación lipídica en la dieta de bovinos sobre los ácidos grasos funcionales de la leche y la producción de metano y ácidos grasos volátiles del fluido ruminal por cromatografía de gases. Tesis MSc. Universidad de Caldas, Manizales, COL.

Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.

Tiemann, T.T., C.E. Lascano, H.R. Wettstein, A.C. Mayer, M. Kreuzer, and H.D. Hess. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Anim. 2:790-799.

Vasta, V., H.P.S. Makkar, M. Mele, and A. Priolo. 2009. Ruminal biohydrogenation as affected by tannins in vitro. Brit. J. Nutr. 102:82-92.

Van Soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.

Yami, A., A.J. Litherland, J.J. David, T. Sahlu, R. Puchala, and A.L. Goetsch. 2000. Effect of dietary level of Leucaena leucocephala on performance of Angora and Spanish doelings. Small Ruminant Res. 38:17-27.

Weiss, M.F., F.A. Martz, and C.L. Lorenzen. 2004a. Conjugated linoleic acid: Historical context and implications. Prof. Anim. Sci. 20:118-126.

Weiss, M.F., F.A. Martz, and C.L. Lorenzen. 2004b. Conjugated linoleic acid: Implicated mechanisms related to cancer, atherosclerosis and obesity. Prof. Anim. Sci. 20:127-135.

Published

2016-06-20

How to Cite

Prieto-Manrique, E., Vargas-Sánchez, J. E., Angulo-Arizala, J., & Mahecha-Ledesma, L. (2016). Fatty acids, ruminal fermentation, and methane production, of forage in intensive silvopastures with Leucaena. Agronomía Mesoamericana, 27(2), 337–352. https://doi.org/10.15517/am.v27i2.24386

Most read articles by the same author(s)

<< < 1 2