Crinivirus and begomovirus detection in tomato plantlets and weeds associated to nurseries
DOI:
https://doi.org/10.15517/ma.v28i2.25860Keywords:
Tomato chlorosis virus (ToCV), geminivirus, Solanum lycopersicum, whiteflies.Abstract
The aim of this work was to detect plant infections caused by Tomato chlorosis virus (ToCV) and begomovirus in tomato plantlets, and in growing weeds around nursery greenhouses. During one year, starting in April 2008, 168 leaf tissue samples were collected, 90 tomato plantlets and 78 weeds from three different nurseries in Cartago province, Costa Rica. Reverse transcription and real time polymerase chain reaction (qRT-PCR) was used to determine that 18,9% of tomato plantlets and 7,7% of weeds were infected with ToCV virus. Begomoviruses were detected using Dot Blot hybridization and non-radioactive probe. Next, hybridization results were confirmed using Rolling Circle Amplification (RCA) followed by PCR, using universal primers. None tomato plantlet resulted positive when tested, but there were six weeds infected; in fact, Phytolacca icosandra and Brassica sp. were both coinfected with ToCV virus. These results suggest that ToCV infected tomato plantlets when commercialized, could serve as way of virus introduction to other country regions. Finally, weeds growing around greenhouses have shown to be potential viral sources of ToCV and begomovirus.
Downloads
References
Abou-Jawdah, Y., C. El Mohtar, H. Atamian, and H. Sobh. 2006. First report of Tomato chlorosis virus in Lebanon. Plant Dis. 90:378.
Acotto, G.P., and L. Sardo. 2010. Tomato yellow leaf curl disease epidemics. In: P.A. Stanley, y S.E. Naranjo, editors, Bemisia: Bionomics and management of a global pest. Springer, HOL. p. 339-345.
Ala-Poikela, M., E. Svensson, A. Rojas, T. Horko, L. Paulin, and J.P. Valkonen. 2005. Genetic diversity and mixed infections of begomoviruses infecting tomato, pepper and cucurbit crops in Nicaragua. Plant Pathol. 54:448-459.
Barboza, N., M. Blanco-Meneses, M. Hallwass, E. Moriones, and A. Inoue-Nagata. 2014. First report of Tomato yellow leaf curl virus in tomato in Costa Rica. Plant Dis. 98:699.
Boykin, L.M. 2014. Bemisia tabaci nomenclature: lessons learned. Pest. Manag. Sci. 70:1454-1459.
Castro, R.M., E. Hernández, F. Mora, P. Ramírez, and R.W. Hammond. 2009. First report of Tomato chlorosis virus in tomato in Costa Rica. Plant Dis. 93:970.
Castro, R.M., L. Moreira, M. Rojas, R. Gilbertson, E. Hernandez, F. Mora, and P. Ramírez. 2013. Occurrence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) in potential new hosts in Costa Rica. Plant Pathol. J. 29:285-293.
Chu, C., T.P. Freeman, J.S. Buckner, T.J. Henneberry, D. Nelson, G.P. Walker, and E.T. Natwick. 2000. Bemisia argentifolii (Homoptera: Aleyrodidae) colonization on upland cotton and relationships to leaf morphology and leaf age. Ann. Entomol. Soc. Am. 93:912-919.
Dellaporta, S.L., J. Wood, and J.B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1:19-21.
Díaz, M., D.P. Maxwell, J.P. Karkashian, and P. Ramírez. 2002. Calopogonium golden mosaic virus identified in Phaseolus vulgaris from western and northern regions of Costa Rica. Plant Dis. 86:188.
Dovas, C.I., N.I. Katis, and A.D. Avgelis. 2002. Multiplex detection of criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 86:1345-1349.
Elbert, A., and R. Nauen. 2000. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag. Sci. 56:60-64.
Fortes, I.M., E. Moriones, and J. Navas-Castillo. 2012. Tomato chlorosis virus in pepper: prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Path. 61:994-1001.
Gámez, R. 1971. Los virus del frijol en Centroamérica. I. Transmisión por moscas blancas (Bemisia tabaci) y plantas hospedantes del virus del mosaico dorado. Turrialba 21:22-27.
García-Andrés, S., D.M. Tomás, S. Sánchez-Campos, J. Navas-Castillo, and E. Moriones. 2007. Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease associated begomoviruses. Virology 365:210-219.
Gilbertson, R.L., M. Rojas, and E. Natwick. 2011. Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci) transmissible geminiviruses. In: W.M. Thompson, editor, The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus infected host plants. Springer, HOL. p. 323-356.
Gorman, K., G. Devine, J. Bennison, P. Coussons, N. Punchard, and I. Denholm. 2007. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag. Sci. 63:555-558.
Guevara-Coto, J.A., N. Barboza-Vargas, E. Hernandez-Jimenez, R.W. Hammond, and P. Ramirez-Fonseca. 2011. Bemisia tabaci biotype Q is present in Costa Rica. Eur. J. Plant Pathol. 131:167-170.
Haible, D., S. Kober, and H. Jeske. 2006. Rolling circle ampli cation revolutionizes diagnosis and genomic of geminiviruses. J. Virol. Methods 135:9-16.
Hernández, E., F. Mora-Umaña, F. Albertazzi, J.P. Karkashian, and P. Ramírez. 2012. Comparative analysis of three different total nucleic acid extraction protocols for the diagnosis of Geminiviruses in squash (Cucurbita moschata). J. Phytopathol. 160:19-25.
Hilje, L., H.S. Costa, and P.A. Stansly. 2001. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 20:801-812.
Hilje, L., R. Lastra, T. Zoebisch, G. Calvo, L. Segura, L. Barrantes, D. Alpízar, y R. Amador. 1993. Las moscas blancas en Costa Rica. En: L. Hilje y O. Arboleda, editores, Las moscas blancas (Homoptera: Aleyrodidae) en América Central y el Caribe. CATIE, Turrialba, CRC. p. 58-63.
Hilje, L., and P.A. Stansly. 2002. Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot. 27:10-16.
Hilje, L., and F.J. Morales. 2008. Whitefly bioecology and management in Latin America. In: J.L. Capinera, editor, Encyclopedia of entomology. Springer, HOL. p. 4250-4260.
Hilje, L., and P.A. Stansly. 2008. Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Tomato yellow mottle virus (ToYMoV) in Costa Rica. Crop Prot. 27:10-16. doi:10.1016/j.cropro.2007.04.003
Höfer, P., M. Engel, H. Jeske, and T. Frischmuth. 1997. Nucleotide sequence of a new bipartite geminivirus isolated from the common weed Sida rhombifolia in Costa Rica. J. Gen. Virol. 78:1785-1790.
Idris, A.M., G. Rivas-Platero, I. Torres-Jerez, and J.K. Brown. 1999. First report of Sinaloa tomato leaf curl geminivirus in Costa Rica. Plant Dis. 83:303.
Janssen, J.A., W.F. Tjallingnii, and J.C. van Lenteren. 1989. Electrical recording and ultrastructure of stylet penetration by the greenhouse whitefly. Entomol. Exp. Appl. 52:69-81.
Jones, R.A. 2009. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions and prospects for control. Virus Res. 141:113-130.
Jovel, J., W. Preiss, and H. Jeske. 2007. Characterization of DNA intermediates of an arising geminivirus. Virus Res. 130:63-70.
Kakati, N., and P.D. Nath. 2014. Sustainable management of Tomato leaf curl virus disease and Bemisia tabaci through integration of physical barrier with biopesticides. Int. J. Innov. Res. Dev. 3:32-140.
Karkashian, J.P., D.P. Maxwell, and P. Ramírez. 2002. Squash yellow mottle geminivirus: a new cucurbit infecting geminivirus from Costa Rica. Phytopathol. 92:S125.
Kim, K.S., and E.M. Flores. 1979. Nuclear changes associated with Euphorbia mosaic virus transmitted by the whitefly. Phytopathol. 69:980-984.
Lei, H., W.F. Tjallingii, and J.C. van Lenteren. 1998. Probing and feeding characteristics of the greenhouse whitefly in association with host-plant acceptance and whitefly strains. Entomol. Exp. Appl. 88:73-80.
Li, A.Y., T.J. Dennehy, S. Li, M.E. Wigert, M. Zarborac, and R.L. Nichols. 2001. Sustaining Arizona’s fragile success in whitefly resistance management. In: P. Dugger, and D. Richter, editors, Proceedings Beltwide Cotton Conferences. National Cotton Council, Memphis, USA. p. 1108-1114.
Liu, H.Y., G.C. Wisler, and J.E. Duffus. 2000. Particle length of whitefly-transmitted criniviruses. Plant Dis. 84: 803-805.
Lotrakul, P., R.A. Valverde, R. De-La-Torre, S. Jeonggu, and A. Gómez. 2000. Occurrence of a strain of Texas pepper virus in Tabasco and Habanero pepper in Costa Rica. Plant Dis. 84:168-172.
Martínez-Zubiaur, Y., E. Fiallo-Olive, J. Carrillo-Tripp, and R. Rivera-Bustamante. 2008. First report of Tomato chlorosis virus infecting tomato in single and mixed infections with Tomato yellow leaf curl virus in Cuba. Plant Dis. 92:836.
Mears, D.R., and A.J. Both. 2000. Insect exclusion from greenhouses. http://horteng.envsci.rutgers.edu/ppt/papers/ ScreeningPaper.pdf (accessed 11 aug. 2016).
Morales, F.J. 2010. Distribution and dissemination of begomoviruses in Latin American and the Caribbean. In: P.A. Stansly, and S.E. Naranjo, editors, Bemisia: Bionomics and management of a global pest. Springer, HOL. p. 185-226.
Moriones, E., and J. Navas-Castillo. 2010. Tomato yellow leaf curl disease epidemics. In: P.A. Stansly, and S.E. Naranjo, editors, Bemisia: Bionomics and management of a global pest. Springer, HOL. p. 259-282.
Nakhla, M.K., M.D. Maxwell, S.H. Hidayat, D.R. Lange, A.O. Loniello, M.R. Rojas, D.P. Maxwell, E.W. Kitajima, A. Rojas, P. Anderson, and R.L. Gilbertson. 1994. Two geminiviruses associated with tomatoes in Central America. Phytopathol. 84:1155.
Nakhla, M.K., A. Sorensen, D.P. Maxwell, L. Mejia, P. Ramírez, and J.P. Karkashian. 2005. Molecular characterization of tomato-infecting begomoviruses in Central America and development of DNA-based detection methods. Acta Hort. 695:277-288.
Nauen, R., N. Stump, and A. Elbert. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci. 58:868-887.
Navas-Castillo, J., R. Camero, M. Bueno, and E. Moriones. 2000. Severe yellowing outbreaks in tomato in Spain associated with infections of Tomato chlorosis virus. Plant Dis. 84:835-837.
Navas-Castillo, J., E. Fiallo-Olivé, and S. Sánchez-Campos. 2011. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49:219-248.
Navas-Castillo, J., J.J. López-Moya, and M.A. Aranda. 2014. Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann. Appl. Biol. 165:155-17.
Nawaz-ul-Rehman, M.S., and C.M. Fauquet. 2009. Evolution of geminiviruses and their satellites. FEBS Lett. 583:1825-1832.
Norris, R.F., and M. Kogan. 2005. Ecology of interactions between weeds and arthropds. Annu. Rev. Entomol. 50:479-503.
Orfanidou, C.G., C. Dimitriou, L.C. Papayiannis, V.I. Maliogka, and N.I. Katis. 2013. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 186:120-129.
Perring, T.M., N.M. Gruenhagen, and C.H. Farrar. 1999. Management of plant viral diseases through chemical control of insect vectors. Annu. Rev. Entomol. 44:457-481.
Polston, J.E., and P.K. Anderson. 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis. 81:1358-1369.
Polston, J.E., P. De Barro, and L.M. Boykin. 2014. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest. Manag. Sci. 70:1547-1552.
Ramírez, P., E. Hernández, F. Mora, R. Abraitis, and R.W. Hammond. 2008. Limited geographic distribution of Beet pseudo- yellows virus in Costa Rican cucurbits. J. Plant Pathol. 90:329-333.
Rojas, M.R., and R.L. Gilbertson. 2008. Emerging plant viruses: a diversity of mechanisms and opportunities. In: M.J. Roossinck, editor, Plant virus evolution. Springer-Verlag, Berlín, GER. p. 27-51.
Rojas, M.R., R.L. Gilbertson, D.R. Russell, and D.P. Maxwell. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis. 77:340-347.
Rojas, M.R., C. Hagen, W.J. Lucas, and R.L. Gilbertson. 2005. Exploting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361-394.
Schuster, D.J., P.A. Stansly, and J.E. Polston. 1996. Expressions of plant damage of Bemisia. In: D. Gerling, and R.T. Mayer, editors, Bemisia: 1995, taxonomy, biology, damage, control and management. Intercept, GBR. p. 153-165.
Seal, S.E., F. van-den-Bosch, and M.J. Jeger. 2006. Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit. Rev. Plant Sci. 25:23-46.
Solorzano-Morales, A., N. Barboza, E. Hernández, F. Mora-Umaña, P. Ramírez, and R.W. Hammond. 2011. Newly discovered natural hosts of Tomato chlorosis virus in Costa Rica. Plant Dis. 95:497.
Tzanetakis, I.E., R.R. Martin, and W.M. Wintermantel. 2013. Epidemiology of criniviruses: an emerging problem in world agriculture. Front. Microbiol. 4:119. doi:10.3389/fmicb.2013.00119
Valverde, R., y M. Moreira. 2004. Identificación de virus en el cultivo de camote (Ipomea batatas L.) en Costa Rica. Agron. Mesoam. 15:1-7.
Vargas, J.A., R.W. Hammond, E. Hernández, N. Barboza, F. Mora, and P. Ramírez. 2011. First report of Tomato chlorosis virus infecting sweet pepper in Costa Rica. Plant Dis. 95:1482.
Vargas-Asencio, J.A., E. Hernández, N. Barboza, R. Hammond, F. Mora, and P. Ramírez. 2013. Detection of Tomato chlorosis virus and its vector Trialeurodes vaporariorum in greenhouse grown tomato and sweet pepper in the Cartago province, Costa Rica. J. Plant Pathol. 95:627-630.
Velasco L., B. Simón, D. Janssen, and J.L. Cenis. 2008. Incidences and progression of Tomato chlorosis virus disease and Tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Ann. Appl. Biol. 153:335-344.
Wintermantel, W.M. 2004. Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. APSnet Features. doi:10.1094/APSnetFeature-2004-0604.
Wintermantel, W.M. 2010. Transmission efficiency and epidemiology of criniviruses. In: P.A. Stansly, and S.E. Naranjo, editors, Bemisia: Bionomics and management of a global pest. Springer, HOL. p. 319-331.
Wintermantel, W.M., A.A. Cortez, A.G. Anchieta, A. Gulati-Sakhuja, and L.L. Hladky. 2008. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and in uences efficiency of virus transmission. Phytopathol. 98:1340-1345.
Wintermantel, W.M., and G.C. Wisler. 2006. Vector specificity, host range, and genetic diversity of Tomato chlorosis virus. Plant Dis. 90:814-819.
Wisler, G.C., R.H. Li, H.Y. Liu, D.S. Lowry, and J.E. Duffus. 1998. Tomato chlorosis virus: a new whitefly-transmitted, phloem limited, bipartite closterovirus of tomato. Phytopathol. 88:402-409.
Wyatt, S.D., and J.D. Brown. 1996. Detection of subgroup III geminiviruses isolates in leaf extracts by degenerate initiators and polymerase chain reaction. Phytopathol. 86:1288-1293.
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).