ía Mesoamericana ISSN electrónico: 2215-3608

Nutritional characterization and determination of phytic acid as an anti-nutritional factor of cowpea beans

Claudia Denise De-Paula, Sara Jarma-Arroyo, Hermes Aramendiz-Tatis



In Cordoba, Monteria, Colombia, poverty reaches 67.8% of the population, with a generalized food under consumption in the region, and it is estimated that on average, the daily calorie intake is lower than an 18.7%, so, it is necessary to know the qualitative characteristics and the anti-nutritional factors of regional raw materials. The objective of this study was to nutritionally characterize 43 genotypes of cowpea beans and to quantify the phytic acid of the best cultivars based on the study of organic phosphorus content on the samples, assuming that one molecule of this acid contains six molecules of phosphorus, in relation to the protein content and minerals. The genotypes that were used came from Córdoba’s University Genetic Improvement Program; the investigation was developed between 2012 to 2014. The Criollo Córdoba bean sample, which was used as a control, had the highest value in phytic acid content of (12.267 ± 2.15 mg/g) and the cultivar L042 had the lowest phytic acid content (9.630 ± 1.725 mg/g). ), which indicates an improvement in the bioavailability of minerals. The protein content had a range between 22.05% ± 0.82 to 26.90% ± 1.76, and the lines L047, L042, L026, L029, L019 and L002 showed a higher content. The iron amount varied between 59.54% ± 24 and 77-177.90% ± 122.20, excelling in the cultivars L042, L020, L001, L005, L057 and L047, which exceeded the control sample. The tested genotypes showed significant differences (p≤0.05) in phosphorus content and values ranged from 4.64 ± 0.43 to 5.69% ± 0.38%; no cultivar surpassed the control sample. In zinc content, cultivars showed no significant differences (p≥0.05), and ranged between 43.46% ± 4.75 and 10.81 ± 53.38%. L042 cultivar was the best in nutritional and lower phytic acid content as antinutritional substance required to replace the currently consumed varieties of cowpea beans.


food composition, nutritional requirements; nutritional value; Vigna unguiculata L.


Angyal, S.J., and A.F. Russell. 1969. Ciclitols. XXVIII. Methyl esters of inositol phosphates. The structure of phytic acid. Aust. J. Chem. 22:383-390. doi:10.1071/CH9690383

AOAC (Association Official Analytical Chemists). 2012. Official Methods of Analysis of the Association of Official Analytical Chemists International. 19th ed. AOAC Int., Gaithersburg, MD, USA.

Antova, G., T. Stoilova, and M. Ivanova. 2014. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33:146-152. doi: 10.1016/j.ffca.2013.12.005

Avanza, M., B. Acevedo, M. Chaves, and M. Añón. 2013. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. Food Sci.Technol. 51:148-157. doi:10.1016/j.lwt.2012.09.010

BID (Banco Interamericano de Desarrollo). 2011. Caribe sin hambre: Informe final. BID, Barranquilla, COL.

Brigide, P., and S.G. Canniatti-Brazaca. 2006. Antinutrients nutrients and ‘‘in vitro’’ availability of iron in irradiated common beans (Phaseolus vulgaris). Food Chem. 98:85-89. doi:10.1016/j.foodchem.2005.05.054

Cairo, G., S. Recalcati, A. Pietrangelo, and G. Minotti. 2002. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic. Biol. Med. 32:1237-1243. doi:10.1016/S0891-5849(02)00825-0

Carvalho, A.F., N. de-Sousa, D.F. Farias, L.C. da-Rocha-Bezerra, R.M. da-Silva, M. Viana, S. Gouveia, S. Sampaio, M. de-

Sousa, G.P. de-Lima, S. de-Morais, C. Barros, and F. Freire-Filho. 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26:81-88. doi:10.1016/j.


Chaparro, S.P., I.D. Aristizábal, y J.H. Gil. 2009. Composición y factores antinutricionales de las semillas del género mucuna. Rev. Fac. Nac. Agro. Medellin. 62:4843-4853.

Chen, P.S., T.Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756-1758. doi:10.1021/ac60119a033

CIAT. 2016. Lanzan nuevas variedades de fríjol para mejorar la alimentación de los colombianos y responder al cambio climático. CIAT, COL. (consultado 27 junio 2017).

Cruz, G.A., M.G. Oliveira, C.V. Pires, M.R. Gomes, N.M. Costa, M.H. Brumano, and M.A. Moreira. 2003. Protein quality and in vivo digestibility of different varieties of bean (Phaseolus vulgaris L.). Braz. J. Food Technol. 6:157-162.

DANE (Departamento Administrativo Nacional de Estadística). 2016. Pobreza monetaria y multidimensional en Colombia 2016. DANE, COL. (consultado 24 mayo 2017).

Deol, J.K., and K. Bains. 2010. Effect of household cooking methods on nutritional and anti-nutritional factors in green cowpea (Vigna unguiculata) pods. J. Food Sci. Technol. 47:579-581. doi:10.1007/s13197-010-0112-3

FAO. 2013. Estadísticas de producción de cultivos. (consultado 24 jul. 2016).

Fischer, C.L., M. Ezzati, and R.E. Black. 2009. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 63:591-597. doi:10.1038/ejcn.2008.9

Frota, K., R.A. Soares, e J.A. Arêas. 2008. Composição química do feijão caupí (Vigna unguiculata L. Walp), cultivar BRSMilênio. Ciênc. Tecnol. Aliment. 28:470-476. doi:10.1590/S0101-20612008000200031

Giami, S.Y. 2005. Compositional and nutritional properties of selected newly developed lines of cowpea (Vigna unguiculata (L.) Walp). J. Food Compos. Anal. 18:665-673. doi:10.1016/j.jfca.2004.06.007

Giami, S.Y., M.O. Akusu, and J.N. Emelike. 2001. Evaluation of selected food attributes of four advanced lines of ungerminated and germinated Nigerian cowpea (Vigna unguiculata (L.) Walp. Plant Foods Hum. Nutr. 56(1):61-73. doi:10.1023/A:100818041

Gupta, P., R. Singh, S. Malhotra, K.S. Boora, and H.R. Singal. 2010. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiol. Mol. Biol. Plants 16:53-58. doi:10.1007/s12298-010-0007-9

Harland, B.F., and D. Oberleas. 1977. A modified method for phytate analysis using an ion-exchange procedure: application to textured vegetable proteins. Cereal Chem. 54:827-832.

Haas, J.D., J.L. Beard, L.E. Murray-Kolb, A.M. del-Mundo, A. Felix, and G.B. Gregorio. 2005. Iron-biofortified rice improves the iron stores of non-anemic Filipino women. J. Nutr. 135:2823-2830.

Hortwitz, W. 1982. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54:67A-76A. doi:10.1021/ac00238a002

Iqbal, A., I.A. Khalil, N. Ateeq, and M.S. Khan. 2006. Nutritional quality of important food legumes. Food Chem. 97:331-335. doi:10.1016/j.foodchem.2005.05.011

Kalpanadevi, V., and V.R. Mohan. 2013. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna aunguiculata (L.) Walp subsp. unguiculata. Food Sci. Technol. 51:455-461. doi:10.1016/j.lwt.2012.09.030

King, J.C., D.M. Shames, and L.R. Woodhouse. 2000. Zinc homeostasis in humans. J. Nutr. 130:1360S-1366S.

Lathan, M.C. 2002. Nutrición humana en el mundo en desarrollo. Colección FAO: Alimentación y nutrición N° 29. FAO, Roma, ITA.

Lara-Flores, M., S.G. Granados-Puerto, L. Olivera-Castillo, F.E. Pereira-Pacheco, R.E. del-Río-Rodríguez, and M.A. Olvera-Novoa. 2007. Nutritional evaluation of treated X’pelon seed (Vigna unguiculata (L.) Walp) in the feeding of Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 138:178-188. doi:10.1016/j.anifeedsci.2007.06.023

López, H.W., F. Leenhardt, C. Coudray, and C. Remesy. 2002. Minerals and phytic acid interactions: is it a real problem for

human nutrition? Int. J. Food Sci. Technol. 37:727-739. doi:10.1046/j.1365-2621.2002.00618.x

Martínez, B., M.V. Ibañez, y F. Rincón. 2002. Ácido fítico: aspectos nutricionales e implicaciones analíticas. Arch. Lat. Nutr. 52:219-231.

Martinez-Meyer, M.R., A. Rojas, A. Santanen, and F.L. Stoddard. 2013. Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chem. 136:87-93. doi:10.1016/j.foodchem.2012.07.105

Meenakshi, J.V., N.L. Johnson, V.M. Manyong, H. DeGroote, J. Javelosa, D.V. Yanggen, F. Naher, C. Gonzalez, and E. Meng. 2010. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 38:64-75. doi:10.1016/j.worlddev.2009.03.014

Ministerio de la Protección Social, e Instituto Colombiano de Protección Familiar. 2011. Encuesta nacional de la situación

nutricional en Colombia 2010. Ministerio de Salud y Protección Social, COL. (consultado 24 mayo 2017).

Mitchikpe, E.C., R. Dossa, E.A. Ategbo, J. van-Raaij, P. Hulshof, and F. Kok. 2008. The supply of bioavailable iron and zinc may be affected by phytate in Beninese children. J. Food Compos. Anal. 21:17-25. doi:10.1016/j.jfca.2007.06.006

Oluwatosin, O.B. 1999. Genotype x environment influence on cowpea (Vigna unguiculata (L) Walp) antinutritional factors: 1- Trypsin inhibitors, tannins, phytic acid and haemagglutinin. J. Sci. Food Agric. 79:265-272. doi:10.1002/(SICI)1097-


Oppong-Konadu, E.Y.R., H.K Akromah, A. Dapaah, and E. Okai. 2005. Genetic diversity within ghanaian cowpea germplasm based on sds–page of seed protein. Afr. Crop Sci. J. 13:117-123. doi:10.4314/acsj.v3i2.27852

Otten, J., J. Ptizi, and L. Meyers. 2006. Dietary Reference Intakes: The essential guide to nutrient requeriments. The National Academies Press, WA, USA. (accessed 24 May 2017).

Pinheiro, C., J.P. Baeta, A.M. Pereira, H. Domingues, and C.P Ricardo.2010. Diversity of seed mineral composition of Phaseolus vulgaris L. germplasm. J. Food Compos. Anal. 23:319-325. doi:10.1016/j.jfca.2010.01.005

Prada, G.E., A. Soto, y O.F. Herrán. 2005. Consumo de leguminosas en el departamento de Santander, Colombia 2000-2003. Arch. Leatinoam. Nutr. 55:64-70.

Rangel, A., K. Saraiva, P. Schwengber, M.S. Narciso, G.B. Domont, S.T. Ferreira, and C. Pedrosa. 2004. Biological evaluation of a protein isolates from cowpea (Vigna unguiculata) seeds. Food Chem. 87:491-499. doi:10.1016/j.foodchem.2003.12.023

SAS. 2007. SAS/STAT guide for personal computers. version 9.1 ed. SAS Institute, Cary, NC, USA.

Shim, S.I., W.J. Jun, and B.H. Kang. 2003. Evaluation of nutritional and antinutritional components in Korean wild legumes. Plant. Foods Human. Nutr. 58(3):1-11. doi:10.1023/B:QUAL.0000041166.10069.6f

Singh, S., S.S. Kundu, A.S. Negi, and P.N. Singh. 2006. Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Rum. Res. 64:247-254. doi:10.1016/j.smallrumres.2005.04.022

Singh, P., S. Prasad, and W. Aalbersberg. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem. 207:125-131. doi:10.1016/j.foodchem.2016.03.029

Sreerama, Y.N., V.B. Sashikala, V.M. Pratape, and V. Singh. 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 131:462-468. doi:10.1016/j.


Tucuch-Cauich, C.A., S.A. Rodríguez-Herrera, M.H. Reyes-Valdés, J.M. Pat-Fernández, F.M. Tucuch-Cauich, y H.S. Córdova-Orellana. 2011. Índices de selección para producción de maíz forrajero. Agron. Mesoam. 22:123-132. doi:10.15517/am.v22i1.8676

Vargas, Y.R., O.E. Villamil, E. Murillo, W. Murillo, y J.F. Solanilla. 2012. Caracterización fisicoquímica y nutricional de la harina de frijol caupí (Vigna unguiculata (L). cultivado en Colombia. Vitae 19:320-321.

Vasconcelos, I.M., F.M. Machado-Maia, D.F. Farias, C.C. Campello, A.F. Urano-Carvalho, R. de-Azevedo-Moreira, and J.T.

Abreu-de-Oliveira. 2010. Protein fractions, amino acid composition and antinutritional constituents of high-yielding

cowpea cultivars. J. Food Compos. Anal. 23:54-60. doi:10.1016/j.jfca.2009.05.008

Wang, N., and J.K. Daun. 2004. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas

(Pisum sativum). J. Sci. Food Agric. 84:1021-1029. doi:10.1002/jsfa.1742


  • There are currently no refbacks.

Comments on this article

View all comments

© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: