Nutritional characterization and determination of phytic acid as an anti-nutritional factor of cowpea beans
DOI:
https://doi.org/10.15517/ma.v29i1.27941Keywords:
food composition, nutritional requirements, nutritional value, Vigna unguiculata L.Abstract
In Cordoba, Monteria, Colombia, poverty reaches 67.8% of the population, with a generalized food under consumption in the region, and it is estimated that on average, the daily calorie intake is lower than an 18.7%, so, it is necessary to know the qualitative characteristics and the anti-nutritional factors of regional raw materials. The objective of this study was to nutritionally characterize 43 genotypes of cowpea beans and to quantify the phytic acid of the best cultivars based on the study of organic phosphorus content on the samples, assuming that one molecule of this acid contains six molecules of phosphorus, in relation to the protein content and minerals. The genotypes that were used came from Córdoba’s University Genetic Improvement Program; the investigation was developed between 2012 to 2014. The Criollo Córdoba bean sample, which was used as a control, had the highest value in phytic acid content of (12.267 ± 2.15 mg/g) and the cultivar L042 had the lowest phytic acid content (9.630 ± 1.725 mg/g). ), which indicates an improvement in the bioavailability of minerals. The protein content had a range between 22.05% ± 0.82 to 26.90% ± 1.76, and the lines L047, L042, L026, L029, L019 and L002 showed a higher content. The iron amount varied between 59.54% ± 24 and 77-177.90% ± 122.20, excelling in the cultivars L042, L020, L001, L005, L057 and L047, which exceeded the control sample. The tested genotypes showed significant differences (p≤0.05) in phosphorus content and values ranged from 4.64 ± 0.43 to 5.69% ± 0.38%; no cultivar surpassed the control sample. In zinc content, cultivars showed no significant differences (p≥0.05), and ranged between 43.46% ± 4.75 and 10.81 ± 53.38%. L042 cultivar was the best in nutritional and lower phytic acid content as antinutritional substance required to replace the currently consumed varieties of cowpea beans.
Downloads
References
Angyal, S.J., and A.F. Russell. 1969. Ciclitols. XXVIII. Methyl esters of inositol phosphates. The structure of phytic acid. Aust. J. Chem. 22:383-390. doi:10.1071/CH9690383
AOAC (Association Official Analytical Chemists). 2012. Official Methods of Analysis of the Association of Official Analytical Chemists International. 19th ed. AOAC Int., Gaithersburg, MD, USA.
Antova, G., T. Stoilova, and M. Ivanova. 2014. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33:146-152. doi: 10.1016/j.ffca.2013.12.005
Avanza, M., B. Acevedo, M. Chaves, and M. Añón. 2013. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. Food Sci.Technol. 51:148-157. doi:10.1016/j.lwt.2012.09.010
BID (Banco Interamericano de Desarrollo). 2011. Caribe sin hambre: Informe final. BID, Barranquilla, COL.
Brigide, P., and S.G. Canniatti-Brazaca. 2006. Antinutrients nutrients and ‘‘in vitro’’ availability of iron in irradiated common beans (Phaseolus vulgaris). Food Chem. 98:85-89. doi:10.1016/j.foodchem.2005.05.054
Cairo, G., S. Recalcati, A. Pietrangelo, and G. Minotti. 2002. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic. Biol. Med. 32:1237-1243. doi:10.1016/S0891-5849(02)00825-0
Carvalho, A.F., N. de-Sousa, D.F. Farias, L.C. da-Rocha-Bezerra, R.M. da-Silva, M. Viana, S. Gouveia, S. Sampaio, M. de-
Sousa, G.P. de-Lima, S. de-Morais, C. Barros, and F. Freire-Filho. 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26:81-88. doi:10.1016/j.
jfca.2012.01.005
Chaparro, S.P., I.D. Aristizábal, y J.H. Gil. 2009. Composición y factores antinutricionales de las semillas del género mucuna. Rev. Fac. Nac. Agro. Medellin. 62:4843-4853.
Chen, P.S., T.Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756-1758. doi:10.1021/ac60119a033
CIAT. 2016. Lanzan nuevas variedades de fríjol para mejorar la alimentación de los colombianos y responder al cambio climático. CIAT, COL. http://blog.ciat.cgiar.org/es/lanzan-nuevas-variedades-de-frijol-para-mejorar-la-alimentacion-delos-colombianos-y-responder-al-cambio-climatico/ (consultado 27 junio 2017).
Cruz, G.A., M.G. Oliveira, C.V. Pires, M.R. Gomes, N.M. Costa, M.H. Brumano, and M.A. Moreira. 2003. Protein quality and in vivo digestibility of different varieties of bean (Phaseolus vulgaris L.). Braz. J. Food Technol. 6:157-162.
DANE (Departamento Administrativo Nacional de Estadística). 2016. Pobreza monetaria y multidimensional en Colombia 2016. DANE, COL. https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-ydesigualdad/pobreza-monetaria-y-multidimensional-en-colombia-2016 (consultado 24 mayo 2017).
Deol, J.K., and K. Bains. 2010. Effect of household cooking methods on nutritional and anti-nutritional factors in green cowpea (Vigna unguiculata) pods. J. Food Sci. Technol. 47:579-581. doi:10.1007/s13197-010-0112-3
FAO. 2013. Estadísticas de producción de cultivos. http://faostat.fao.org/ (consultado 24 jul. 2016).
Fischer, C.L., M. Ezzati, and R.E. Black. 2009. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 63:591-597. doi:10.1038/ejcn.2008.9
Frota, K., R.A. Soares, e J.A. Arêas. 2008. Composição química do feijão caupí (Vigna unguiculata L. Walp), cultivar BRSMilênio. Ciênc. Tecnol. Aliment. 28:470-476. doi:10.1590/S0101-20612008000200031
Giami, S.Y. 2005. Compositional and nutritional properties of selected newly developed lines of cowpea (Vigna unguiculata (L.) Walp). J. Food Compos. Anal. 18:665-673. doi:10.1016/j.jfca.2004.06.007
Giami, S.Y., M.O. Akusu, and J.N. Emelike. 2001. Evaluation of selected food attributes of four advanced lines of ungerminated and germinated Nigerian cowpea (Vigna unguiculata (L.) Walp. Plant Foods Hum. Nutr. 56(1):61-73. doi:10.1023/A:100818041
Gupta, P., R. Singh, S. Malhotra, K.S. Boora, and H.R. Singal. 2010. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiol. Mol. Biol. Plants 16:53-58. doi:10.1007/s12298-010-0007-9
Harland, B.F., and D. Oberleas. 1977. A modified method for phytate analysis using an ion-exchange procedure: application to textured vegetable proteins. Cereal Chem. 54:827-832.
Haas, J.D., J.L. Beard, L.E. Murray-Kolb, A.M. del-Mundo, A. Felix, and G.B. Gregorio. 2005. Iron-biofortified rice improves the iron stores of non-anemic Filipino women. J. Nutr. 135:2823-2830.
Hortwitz, W. 1982. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54:67A-76A. doi:10.1021/ac00238a002
Iqbal, A., I.A. Khalil, N. Ateeq, and M.S. Khan. 2006. Nutritional quality of important food legumes. Food Chem. 97:331-335. doi:10.1016/j.foodchem.2005.05.011
Kalpanadevi, V., and V.R. Mohan. 2013. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna aunguiculata (L.) Walp subsp. unguiculata. Food Sci. Technol. 51:455-461. doi:10.1016/j.lwt.2012.09.030
King, J.C., D.M. Shames, and L.R. Woodhouse. 2000. Zinc homeostasis in humans. J. Nutr. 130:1360S-1366S.
Lathan, M.C. 2002. Nutrición humana en el mundo en desarrollo. Colección FAO: Alimentación y nutrición N° 29. FAO, Roma, ITA.
Lara-Flores, M., S.G. Granados-Puerto, L. Olivera-Castillo, F.E. Pereira-Pacheco, R.E. del-Río-Rodríguez, and M.A. Olvera-Novoa. 2007. Nutritional evaluation of treated X’pelon seed (Vigna unguiculata (L.) Walp) in the feeding of Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 138:178-188. doi:10.1016/j.anifeedsci.2007.06.023
López, H.W., F. Leenhardt, C. Coudray, and C. Remesy. 2002. Minerals and phytic acid interactions: is it a real problem for
human nutrition? Int. J. Food Sci. Technol. 37:727-739. doi:10.1046/j.1365-2621.2002.00618.x
Martínez, B., M.V. Ibañez, y F. Rincón. 2002. Ácido fítico: aspectos nutricionales e implicaciones analíticas. Arch. Lat. Nutr. 52:219-231.
Martinez-Meyer, M.R., A. Rojas, A. Santanen, and F.L. Stoddard. 2013. Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chem. 136:87-93. doi:10.1016/j.foodchem.2012.07.105
Meenakshi, J.V., N.L. Johnson, V.M. Manyong, H. DeGroote, J. Javelosa, D.V. Yanggen, F. Naher, C. Gonzalez, and E. Meng. 2010. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 38:64-75. doi:10.1016/j.worlddev.2009.03.014
Ministerio de la Protección Social, e Instituto Colombiano de Protección Familiar. 2011. Encuesta nacional de la situación
nutricional en Colombia 2010. Ministerio de Salud y Protección Social, COL. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/Base%20de%20datos%20ENSIN%20-%20Protocolo%20Ensin%202010.pdf (consultado 24 mayo 2017).
Mitchikpe, E.C., R. Dossa, E.A. Ategbo, J. van-Raaij, P. Hulshof, and F. Kok. 2008. The supply of bioavailable iron and zinc may be affected by phytate in Beninese children. J. Food Compos. Anal. 21:17-25. doi:10.1016/j.jfca.2007.06.006
Oluwatosin, O.B. 1999. Genotype x environment influence on cowpea (Vigna unguiculata (L) Walp) antinutritional factors: 1- Trypsin inhibitors, tannins, phytic acid and haemagglutinin. J. Sci. Food Agric. 79:265-272. doi:10.1002/(SICI)1097-
(199902)79:2<265::AID-JSFA191>3.0.CO;2-Z
Oppong-Konadu, E.Y.R., H.K Akromah, A. Dapaah, and E. Okai. 2005. Genetic diversity within ghanaian cowpea germplasm based on sds–page of seed protein. Afr. Crop Sci. J. 13:117-123. doi:10.4314/acsj.v3i2.27852
Otten, J., J. Ptizi, and L. Meyers. 2006. Dietary Reference Intakes: The essential guide to nutrient requeriments. The National Academies Press, WA, USA. https://www.nal.usda.gov/sites/default/files/fnic_uploads/DRIEssentialGuideNutReq.pdf (accessed 24 May 2017).
Pinheiro, C., J.P. Baeta, A.M. Pereira, H. Domingues, and C.P Ricardo.2010. Diversity of seed mineral composition of Phaseolus vulgaris L. germplasm. J. Food Compos. Anal. 23:319-325. doi:10.1016/j.jfca.2010.01.005
Prada, G.E., A. Soto, y O.F. Herrán. 2005. Consumo de leguminosas en el departamento de Santander, Colombia 2000-2003. Arch. Leatinoam. Nutr. 55:64-70.
Rangel, A., K. Saraiva, P. Schwengber, M.S. Narciso, G.B. Domont, S.T. Ferreira, and C. Pedrosa. 2004. Biological evaluation of a protein isolates from cowpea (Vigna unguiculata) seeds. Food Chem. 87:491-499. doi:10.1016/j.foodchem.2003.12.023
SAS. 2007. SAS/STAT guide for personal computers. version 9.1 ed. SAS Institute, Cary, NC, USA.
Shim, S.I., W.J. Jun, and B.H. Kang. 2003. Evaluation of nutritional and antinutritional components in Korean wild legumes. Plant. Foods Human. Nutr. 58(3):1-11. doi:10.1023/B:QUAL.0000041166.10069.6f
Singh, S., S.S. Kundu, A.S. Negi, and P.N. Singh. 2006. Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Rum. Res. 64:247-254. doi:10.1016/j.smallrumres.2005.04.022
Singh, P., S. Prasad, and W. Aalbersberg. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem. 207:125-131. doi:10.1016/j.foodchem.2016.03.029
Sreerama, Y.N., V.B. Sashikala, V.M. Pratape, and V. Singh. 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 131:462-468. doi:10.1016/j.
foodchem.2011.09.008
Tucuch-Cauich, C.A., S.A. Rodríguez-Herrera, M.H. Reyes-Valdés, J.M. Pat-Fernández, F.M. Tucuch-Cauich, y H.S. Córdova-Orellana. 2011. Índices de selección para producción de maíz forrajero. Agron. Mesoam. 22:123-132. doi:10.15517/am.v22i1.8676
Vargas, Y.R., O.E. Villamil, E. Murillo, W. Murillo, y J.F. Solanilla. 2012. Caracterización fisicoquímica y nutricional de la harina de frijol caupí (Vigna unguiculata (L). cultivado en Colombia. Vitae 19:320-321.
Vasconcelos, I.M., F.M. Machado-Maia, D.F. Farias, C.C. Campello, A.F. Urano-Carvalho, R. de-Azevedo-Moreira, and J.T.
Abreu-de-Oliveira. 2010. Protein fractions, amino acid composition and antinutritional constituents of high-yielding
cowpea cultivars. J. Food Compos. Anal. 23:54-60. doi:10.1016/j.jfca.2009.05.008
Wang, N., and J.K. Daun. 2004. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas
(Pisum sativum). J. Sci. Food Agric. 84:1021-1029. doi:10.1002/jsfa.1742
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).