Caracterización nutricional y determinación de ácido fítico como factor antinutricional del frijol caupí

Autores/as

  • Claudia Denise De-Paula Universidad de Cordoba (colombia)
  • Sara Jarma-Arroyo Universidad de Córdoba, Facultad de Ingeniería. Montería, Colombia.
  • Hermes Aramendiz-Tatis Universidad de Córdoba, Facultad de Ciencias Agrícolas.

DOI:

https://doi.org/10.15517/ma.v29i1.27941

Palabras clave:

composición de los alimentos, necesidades de nutrientes, valor nutritivo, Vigna unguiculata L.

Resumen

En Córdoba, Montería, Colombia, la pobreza llega al 67,8%, con un subconsumo de alimentos generalizado en la región y se calcula que, en promedio, el consumo diario de calorías es inferior en 18,7%, por lo cual, es necesario conocer las características bromatológicas y factores anti nutricionales de materias primas regionales. El objetivo de este trabajo fue caracterizar nutricionalmente 43 genotipos de frijol caupí y cuantificar el ácido fítico de los mejores cultivares, a partir del fósforo orgánico suponiendo que una molécula de este ácido contenía seis moléculas de fósforo, en relación con el contenido de proteína y minerales. Los genotipos provenían del Programa de Mejoramiento Genético de la Universidad de Córdoba; la investigación se desarrolló desde el año 2012 al 2014. El testigo Criollo Córdoba tuvo el valor más alto en el contenido de ácido fítico (12,267±2,15 mg/g) y el cultivar L042 el más bajo (9,630±1,725 mg/g), lo que indica una mejoría en la biodisponibilidad de los minerales. El contenido de proteína tuvo un rango entre 22,05%±0,82 a 26,90%±1,76, y con mayor contenido las líneas L047, L042, L026, L029, L019 y L002. La cantidad de hierro varió entre 59,54%±24 y 77-177,90%±122,20, sobresaliendo los cultivares L042, L020, L001, L005, L057 y L047, que superaron al testigo. Los genotipos evaluados presentaron diferencias significativas (p≤0,05) en el contenido de fósforo y sus valores variaron de 4,64%±0,43 a 5,69%±0,38; ningún cultivar superó al testigo. En contenido de zinc, los cultivares no presentaron diferencias significativas (p≥0,05), y varió entre 43,46%±4,75 y 53,38%±10,81. El cultivar L042 fue el mejor en características nutricionales y de menor contenido de ácido fítico como sustancia anti nutricional, requeridas para sustituir las variedades de frijol caupí que se consumen actualmente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Angyal, S.J., and A.F. Russell. 1969. Ciclitols. XXVIII. Methyl esters of inositol phosphates. The structure of phytic acid. Aust. J. Chem. 22:383-390. doi:10.1071/CH9690383

AOAC (Association Official Analytical Chemists). 2012. Official Methods of Analysis of the Association of Official Analytical Chemists International. 19th ed. AOAC Int., Gaithersburg, MD, USA.

Antova, G., T. Stoilova, and M. Ivanova. 2014. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. J. Food Compos. Anal. 33:146-152. doi: 10.1016/j.ffca.2013.12.005

Avanza, M., B. Acevedo, M. Chaves, and M. Añón. 2013. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. Food Sci.Technol. 51:148-157. doi:10.1016/j.lwt.2012.09.010

BID (Banco Interamericano de Desarrollo). 2011. Caribe sin hambre: Informe final. BID, Barranquilla, COL.

Brigide, P., and S.G. Canniatti-Brazaca. 2006. Antinutrients nutrients and ‘‘in vitro’’ availability of iron in irradiated common beans (Phaseolus vulgaris). Food Chem. 98:85-89. doi:10.1016/j.foodchem.2005.05.054

Cairo, G., S. Recalcati, A. Pietrangelo, and G. Minotti. 2002. The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic. Biol. Med. 32:1237-1243. doi:10.1016/S0891-5849(02)00825-0

Carvalho, A.F., N. de-Sousa, D.F. Farias, L.C. da-Rocha-Bezerra, R.M. da-Silva, M. Viana, S. Gouveia, S. Sampaio, M. de-

Sousa, G.P. de-Lima, S. de-Morais, C. Barros, and F. Freire-Filho. 2012. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26:81-88. doi:10.1016/j.

jfca.2012.01.005

Chaparro, S.P., I.D. Aristizábal, y J.H. Gil. 2009. Composición y factores antinutricionales de las semillas del género mucuna. Rev. Fac. Nac. Agro. Medellin. 62:4843-4853.

Chen, P.S., T.Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756-1758. doi:10.1021/ac60119a033

CIAT. 2016. Lanzan nuevas variedades de fríjol para mejorar la alimentación de los colombianos y responder al cambio climático. CIAT, COL. http://blog.ciat.cgiar.org/es/lanzan-nuevas-variedades-de-frijol-para-mejorar-la-alimentacion-delos-colombianos-y-responder-al-cambio-climatico/ (consultado 27 junio 2017).

Cruz, G.A., M.G. Oliveira, C.V. Pires, M.R. Gomes, N.M. Costa, M.H. Brumano, and M.A. Moreira. 2003. Protein quality and in vivo digestibility of different varieties of bean (Phaseolus vulgaris L.). Braz. J. Food Technol. 6:157-162.

DANE (Departamento Administrativo Nacional de Estadística). 2016. Pobreza monetaria y multidimensional en Colombia 2016. DANE, COL. https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-ydesigualdad/pobreza-monetaria-y-multidimensional-en-colombia-2016 (consultado 24 mayo 2017).

Deol, J.K., and K. Bains. 2010. Effect of household cooking methods on nutritional and anti-nutritional factors in green cowpea (Vigna unguiculata) pods. J. Food Sci. Technol. 47:579-581. doi:10.1007/s13197-010-0112-3

FAO. 2013. Estadísticas de producción de cultivos. http://faostat.fao.org/ (consultado 24 jul. 2016).

Fischer, C.L., M. Ezzati, and R.E. Black. 2009. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 63:591-597. doi:10.1038/ejcn.2008.9

Frota, K., R.A. Soares, e J.A. Arêas. 2008. Composição química do feijão caupí (Vigna unguiculata L. Walp), cultivar BRSMilênio. Ciênc. Tecnol. Aliment. 28:470-476. doi:10.1590/S0101-20612008000200031

Giami, S.Y. 2005. Compositional and nutritional properties of selected newly developed lines of cowpea (Vigna unguiculata (L.) Walp). J. Food Compos. Anal. 18:665-673. doi:10.1016/j.jfca.2004.06.007

Giami, S.Y., M.O. Akusu, and J.N. Emelike. 2001. Evaluation of selected food attributes of four advanced lines of ungerminated and germinated Nigerian cowpea (Vigna unguiculata (L.) Walp. Plant Foods Hum. Nutr. 56(1):61-73. doi:10.1023/A:100818041

Gupta, P., R. Singh, S. Malhotra, K.S. Boora, and H.R. Singal. 2010. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiol. Mol. Biol. Plants 16:53-58. doi:10.1007/s12298-010-0007-9

Harland, B.F., and D. Oberleas. 1977. A modified method for phytate analysis using an ion-exchange procedure: application to textured vegetable proteins. Cereal Chem. 54:827-832.

Haas, J.D., J.L. Beard, L.E. Murray-Kolb, A.M. del-Mundo, A. Felix, and G.B. Gregorio. 2005. Iron-biofortified rice improves the iron stores of non-anemic Filipino women. J. Nutr. 135:2823-2830.

Hortwitz, W. 1982. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54:67A-76A. doi:10.1021/ac00238a002

Iqbal, A., I.A. Khalil, N. Ateeq, and M.S. Khan. 2006. Nutritional quality of important food legumes. Food Chem. 97:331-335. doi:10.1016/j.foodchem.2005.05.011

Kalpanadevi, V., and V.R. Mohan. 2013. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna aunguiculata (L.) Walp subsp. unguiculata. Food Sci. Technol. 51:455-461. doi:10.1016/j.lwt.2012.09.030

King, J.C., D.M. Shames, and L.R. Woodhouse. 2000. Zinc homeostasis in humans. J. Nutr. 130:1360S-1366S.

Lathan, M.C. 2002. Nutrición humana en el mundo en desarrollo. Colección FAO: Alimentación y nutrición N° 29. FAO, Roma, ITA.

Lara-Flores, M., S.G. Granados-Puerto, L. Olivera-Castillo, F.E. Pereira-Pacheco, R.E. del-Río-Rodríguez, and M.A. Olvera-Novoa. 2007. Nutritional evaluation of treated X’pelon seed (Vigna unguiculata (L.) Walp) in the feeding of Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 138:178-188. doi:10.1016/j.anifeedsci.2007.06.023

López, H.W., F. Leenhardt, C. Coudray, and C. Remesy. 2002. Minerals and phytic acid interactions: is it a real problem for

human nutrition? Int. J. Food Sci. Technol. 37:727-739. doi:10.1046/j.1365-2621.2002.00618.x

Martínez, B., M.V. Ibañez, y F. Rincón. 2002. Ácido fítico: aspectos nutricionales e implicaciones analíticas. Arch. Lat. Nutr. 52:219-231.

Martinez-Meyer, M.R., A. Rojas, A. Santanen, and F.L. Stoddard. 2013. Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chem. 136:87-93. doi:10.1016/j.foodchem.2012.07.105

Meenakshi, J.V., N.L. Johnson, V.M. Manyong, H. DeGroote, J. Javelosa, D.V. Yanggen, F. Naher, C. Gonzalez, and E. Meng. 2010. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 38:64-75. doi:10.1016/j.worlddev.2009.03.014

Ministerio de la Protección Social, e Instituto Colombiano de Protección Familiar. 2011. Encuesta nacional de la situación

nutricional en Colombia 2010. Ministerio de Salud y Protección Social, COL. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/Base%20de%20datos%20ENSIN%20-%20Protocolo%20Ensin%202010.pdf (consultado 24 mayo 2017).

Mitchikpe, E.C., R. Dossa, E.A. Ategbo, J. van-Raaij, P. Hulshof, and F. Kok. 2008. The supply of bioavailable iron and zinc may be affected by phytate in Beninese children. J. Food Compos. Anal. 21:17-25. doi:10.1016/j.jfca.2007.06.006

Oluwatosin, O.B. 1999. Genotype x environment influence on cowpea (Vigna unguiculata (L) Walp) antinutritional factors: 1- Trypsin inhibitors, tannins, phytic acid and haemagglutinin. J. Sci. Food Agric. 79:265-272. doi:10.1002/(SICI)1097-

(199902)79:2<265::AID-JSFA191>3.0.CO;2-Z

Oppong-Konadu, E.Y.R., H.K Akromah, A. Dapaah, and E. Okai. 2005. Genetic diversity within ghanaian cowpea germplasm based on sds–page of seed protein. Afr. Crop Sci. J. 13:117-123. doi:10.4314/acsj.v3i2.27852

Otten, J., J. Ptizi, and L. Meyers. 2006. Dietary Reference Intakes: The essential guide to nutrient requeriments. The National Academies Press, WA, USA. https://www.nal.usda.gov/sites/default/files/fnic_uploads/DRIEssentialGuideNutReq.pdf (accessed 24 May 2017).

Pinheiro, C., J.P. Baeta, A.M. Pereira, H. Domingues, and C.P Ricardo.2010. Diversity of seed mineral composition of Phaseolus vulgaris L. germplasm. J. Food Compos. Anal. 23:319-325. doi:10.1016/j.jfca.2010.01.005

Prada, G.E., A. Soto, y O.F. Herrán. 2005. Consumo de leguminosas en el departamento de Santander, Colombia 2000-2003. Arch. Leatinoam. Nutr. 55:64-70.

Rangel, A., K. Saraiva, P. Schwengber, M.S. Narciso, G.B. Domont, S.T. Ferreira, and C. Pedrosa. 2004. Biological evaluation of a protein isolates from cowpea (Vigna unguiculata) seeds. Food Chem. 87:491-499. doi:10.1016/j.foodchem.2003.12.023

SAS. 2007. SAS/STAT guide for personal computers. version 9.1 ed. SAS Institute, Cary, NC, USA.

Shim, S.I., W.J. Jun, and B.H. Kang. 2003. Evaluation of nutritional and antinutritional components in Korean wild legumes. Plant. Foods Human. Nutr. 58(3):1-11. doi:10.1023/B:QUAL.0000041166.10069.6f

Singh, S., S.S. Kundu, A.S. Negi, and P.N. Singh. 2006. Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Rum. Res. 64:247-254. doi:10.1016/j.smallrumres.2005.04.022

Singh, P., S. Prasad, and W. Aalbersberg. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem. 207:125-131. doi:10.1016/j.foodchem.2016.03.029

Sreerama, Y.N., V.B. Sashikala, V.M. Pratape, and V. Singh. 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 131:462-468. doi:10.1016/j.

foodchem.2011.09.008

Tucuch-Cauich, C.A., S.A. Rodríguez-Herrera, M.H. Reyes-Valdés, J.M. Pat-Fernández, F.M. Tucuch-Cauich, y H.S. Córdova-Orellana. 2011. Índices de selección para producción de maíz forrajero. Agron. Mesoam. 22:123-132. doi:10.15517/am.v22i1.8676

Vargas, Y.R., O.E. Villamil, E. Murillo, W. Murillo, y J.F. Solanilla. 2012. Caracterización fisicoquímica y nutricional de la harina de frijol caupí (Vigna unguiculata (L). cultivado en Colombia. Vitae 19:320-321.

Vasconcelos, I.M., F.M. Machado-Maia, D.F. Farias, C.C. Campello, A.F. Urano-Carvalho, R. de-Azevedo-Moreira, and J.T.

Abreu-de-Oliveira. 2010. Protein fractions, amino acid composition and antinutritional constituents of high-yielding

cowpea cultivars. J. Food Compos. Anal. 23:54-60. doi:10.1016/j.jfca.2009.05.008

Wang, N., and J.K. Daun. 2004. Effect of variety and crude protein content on nutrients and certain antinutrients in field peas

(Pisum sativum). J. Sci. Food Agric. 84:1021-1029. doi:10.1002/jsfa.1742

Publicado

2018-01-01

Cómo citar

De-Paula, C. D., Jarma-Arroyo, S., & Aramendiz-Tatis, H. (2018). Caracterización nutricional y determinación de ácido fítico como factor antinutricional del frijol caupí. Agronomía Mesoamericana, 29(1), 29–40. https://doi.org/10.15517/ma.v29i1.27941