Grazing intensity on the lipid profile in bovine milk in the Colombian dry tropic

Authors

DOI:

https://doi.org/10.15517/am.v30i3.36312

Keywords:

fatty acids, animal feeding, feed grasses, dual purpose breeds

Abstract

Introduction. It has been suggested that the lipid profile in bovine milk affects human health, and it has been identified that conjugated linoleic acid (C9 t11 ALC) could have anticarcinogenic effects.In the high tropics the effect of feeding on lipid profile of milk has been investigated, but few studies have been done in the low tropics. Objective. The objective was to evaluate the effect of three grazing intensities (1, 2 and 3 animals ha-1) in Guinea cv Tanzania (Megathyrsus maximus) on the production, composition and lipid profile in the milk of cross breed cows in different thirds of lactation. Materials and methods. From september to october 2013, two groups of nine animals (three cows in each third of lactation) were selected, and one cow per third of lactation was assigned to each grazing intensity (treatment), during 42 days of evaluation in a replicated 3 x 3 Latin Square design. Results. Milk production did not differ (p>0.05) among treatments and was higher (p<0.05) in cows in early lactation. The treatments did not affect (p>0.05) the composition of the milk, but solids and fat concentration tended (p<0.10) to increase with third of lactation. Bovine milk fat in pasture managed with grazing intensity of 2.0 and 3.0 animals ha-1 had a higher (p<0.05) concentration of CLA (c9 t11) and of polyunsaturated fatty acids (PUFA) than when the grass was managed with 1.0 animal ha-1. The third of lactation did not influence (p>0.05) the concentration of CLA (c9 t11) and PUFA. Conclusion. Management of the cv Tanzania with grazing intensities of 2.0 and 3.0 animals ha-1 resulted in the highest levels of CLA (c9 t11) and PUFA in milk fat, which could have positive effects on human health.

Downloads

Download data is not yet available.

References

Aguilar, O.X., B. Moreno, M.L. Pabón, y J. Carulla. 2009. Efecto del consumo de kikuyo (Pennisetum clandestinum) o raigrás (Lolium hibridum) sobre la concentración de ácido linoléico conjugado y el perfil de ácidos grasos de la grasa láctea. Livest. Res. Rural Dev. 21(4):49. http://www.lrrd.org/lrrd21/4/agui21049.htm (consultado 15 ene. 2018).

Allen, M.S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598-1624. doi:10.3168/jds.S0022-0302(00)75030-2

Amezquita, M. 1999. Diseño y análisis de ensayos para evaluación de pasturas en fincas. CIAT, COL. http://ciat-library.ciat.cgiar.org/forrajes_tropicales/pdf/4th/DisenoYanalisisDeEnsayos.pdf (consultado 15 ene. 2018).

AOAC (Association Official of Analytical Chemistry). 2010. Official methods of analysis of AOAC international. 18th ed. AOAC Int., MD, USA.

Aroeira, L.J.M., F.C.F. Lopes, F. Deresz, R.S. Verneque, M.S. Dayrell, L.L. De-Matos, H. Maldonado-Vasquez, and A. Vittori. 1999. Pasture availability and dry matter intake of lactating crossbred cows grazing elephant grass (Pennisetum purpureum, Schum.). Anim. Feed. Sci. Technol. 78:313-324. doi:10.1016/S0377-8401(98)00270-3

Barber, M.C., R.A. Clegg, M.T. Travers, and R.G. Vernon. 1997. Lipid metabolism in the lactating mammary gland. Biochim. Biophys. Acta 1347(2-3):101-126. doi:10.1016/s0005-2760(97)00079-9

Bargo, F., J. Delahoy, G. Schroeder, and L. Muller. 2006. Milk fatty acid composition of dairy cows grazing at two pasture allowances and supplemented with different levels and sources of concentrate. Anim. Feed Sci. Technol. 125:17-31. doi:10.1016/j.anifeedsci.2005.05.010

Bas, P., H. Archimède, A. Rouzeau, and D. Sauvant. 2003. Fatty acid composition of mixed-rumen bacteria: Effect of concentration and type of forage. J. Dairy Sci. 86:2940-2948. doi:10.3168/jds.S0022-0302(03)73891-0

Bauman, D.E., I.H. Mather, R.J. Wall and A.I. Lock. 2006. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 89:1235-1243.

Bessa, R.J.B., J. Santos-Silva, J.M.R. Ribeiro, and A.B. Portugal. 2000. Retículo-rumen biohydrogenation and the enrichment of ruminant edible products with linoleic acid conjugated isomers. Livest. Prod. Sci. 63:201-211. doi:10.1016/S0301-6226(99)00117-7

Bilal, G., R. Cue, A. Mustafa, and J. Hayes. 2014. Effects of parity, age at calving and stage of lactation on fatty acid composition of milk Canadian Holsteins. Can. J. Anim. Sci. 94:401-406. doi:10.4141/cjas2013-172

Botero, L., y M. Vertel. 2006. Modelo matemático aplicado a la curva de lactancia en ganado vacuno doble propósito. Rev. MVZ. Córdoba 11(1):759-765. doi:10.21897/rmvz.461

Calvache, I., y A. Navas. 2012. Factores que influyen en la composición nutricional de la leche. Rev. Cienc. Anim. 5:73-85.

Castro-Hernández, H., F.F. González-Martínez, I.A. Domínguez-Vara, J.M. Pinos-Rodríguez, E. Morales-Almaráz, y R. Vieyra-Alberto. 2014. Efecto del nivel de concentrado sobre el perfil de ácidos grasos de la leche de vacas Holstein en pastoreo. Agrociencia 48:765-75

Chilliard, Y., and A. Ferlay. 2004. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 44:467-492. doi:10.1051/rnd:2004052

Corl, B., L. Baumgard, D. Dwyer, J. Griinari J., B. Phillips, and D. Bauman. 2001. The role of delta Delta (9)- desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12:622-630. doi:10.1016/S0955-2863(01)00180-2

CORPOICA. 2017. Sistema experto modelos de adaptación y prevención agroclimática. CORPOICA, COL. http://www.corpoica.org.co:8086/NetCorpoicaMVC/SEMapa (consultado 10 ene. 2019).

Dhiman, T.R., G.R. Anand, L.D. Satter, and M.W. Pariza. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 82:2146-2156. doi:10.3168/jds.S0022-0302(99)75458-5

Díaz, G., R. Gutiérrez, N. Pérez, S. Vega-y-León, M. González, G. Prado, G. Urbán, A. Ramírez, y M. Pinto. 2002. Detección de adulteraciones en la grasa de leche pasteurizada mexicana. Rev. Salud Anim. 24(1):54-59.

Dilzer, A., and Y. Park. 2012. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 5:488-513. doi:10.1080/10408398.2010.501409

Dohme, F., A. Machmüller, F. Sutter, and M. Kreuzer. 2004. Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality. Arch. Anim. Nutr. 58(2):99-116. doi:10.1080/00039420410001667485

Elgersma, A., G. Ellen, H. van-der-Horst, H. Boer, P. Dekker, and S. Tamminga. 2004. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 117:13-27. doi:10.1016/j.anifeedsci.2004.08.003

Escobar, A., y J. Carulla. 2003. Efecto de la oferta de forraje sobre los parámetros productivos y composicionales de la leche en la Sabana de Bogotá. Rev. Colomb. Cienc. Pecu. 16(4):67.

Fawcet, B., and J.E. Scott. 1960. A rapid and precise method for determination of urea. J. Clin. Pathol. 13:156-159. doi:10.1136/jcp.13.2.156

Ferlay, A., B. Martin, P. Pradel, J.B. Coulon, and Y. Chilliard. 2006. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J. Dairy Sci. 89:4026-4041. doi:10.3168/jds.S0022-0302(06)72446-8

Gagliostro, G., A. Rodríguez, P. Pellegrini, P. Gatti, G. Musset, R. Castañeda, A. Colombo, e Y. Chilliard. 2006. Efectos del suministro de aceite de pescado solo o en combinación con aceite de girasol sobre las concentraciones de ácido linoleico conjugado (CLA) y omega 3 (n-3) en leche de cabra. Rev. Argent. Prod. Anim. 26:71-87.

Garcés, R., and M. Mancha. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissue. Anal. Biochem. 211:139-143. doi:10.1006/abio.1993.1244

Gastón, A.C., M.L. Pabón, and J.E. Carulla. 2014. Concentration of trans-vaccenic and rumenic acids in the milk from grazing cows supplemented with palm oil, rice bran or whole cottonseed. Rev. Bras. Zootec. 43:315-326. doi:10.1590/S1516-35982014000600006

Gómez, C., L. Bermejo, and V. Loria. 2011. Importance of a balance omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutr. Hosp. 26:323-329. doi:10.1590/S0212-16112011000200013

Haeiwa, H., T. Fujita, Y. Saitoh, and N. Miwa. 2014. Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis. Mol. Cell. Biochem. 386:73-83. doi:10.1007/s11010-013-1846-9

Hurley, W.L., G.J. Warner, and R.R. Grummer. 1987. Changes in triglyceride fatty acid composition of mammary secretions during involution. J. Dairy Sci. 70:2406-2410. doi:10.3168/jds.S0022-0302(87)80302-8

Huth, P., and K. Park. 2012. Influence of dairy product and milk fat consumption on cardiovascular disease risk: A review of the evidence. Adv. Nutr. 3:266-285. doi:10.3945/an.112.002030

Jeffery, H.J. 1970. The length of change-over periods in change-over designs with grazing cattle. Aust. J. Exp. Agric. Anim. Husb. 10:691-693. doi:10.1071/EA9700691

Jenkins, T.C., and M.A. McGuire. 2006. Major advances in nutrition: impact on milk composition. J. Dairy Sci. 89:1302-1310. doi:10.3168/jds.S0022-0302(06)72198-1

Jutzeler, R., and P. Colombani. 2010. Grass-based ruminant production methods and human bioconversion of vaccenic acid and estimations of maximal dietary intake of conjugated linoleic acids. Int. Dairy J. 20:433-448. doi:10.1016/j.idairyj.2010.01.008

Kay, J.K., W.J. Weber, C.E. Moore, D.E. Bauman, L.B. Hansen, H. Chester-Jones, B.A. Crooker, and L.H. Baumgard. 2005. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 83:3886-3893. doi:10.3168/jds.S0022-0302(05)73074-5

Khan, N.A., M.W. Farooq, M. Ali, M. Suleman, N. Ahmad, S.M. Sulaiman, J.W. Cone, and W.H. Hendriks. 2015. Effect of species and harvest maturity on the fatty acids profile of tropical forages. J. Anim. Plant Sci. 25:739-746.

Kratz, M., T. Baars, and S. Guyenet. 2013. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 52(1):1-24. doi:10.1007/s00394-012-0418-1

León, J.M. 2011. Efecto de la incorporación de leguminosas en pasturas de trópico alto sobre el contenido de ácido linoleico conjugado ALC en la leche. Tesis MSc., Universidad Nacional de Colombia, Bogotá, COL.

López, E. 2010. Health effects of oleic acid and long chain omega-3 fatty acids /EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. 61:200-207. doi:10.1016/j.phrs.2009.10.007

Månsson, H.L. 2008. Fatty acids in bovine milk fat. Food Nutr. Res. 52. doi:10.3402/fnr.v52i0.1821

McCarthy, B., L. Delaby, K.M. Pierce, F. Journot, and B. Horan. 2011. Meta-analysis of the impact of stocking rate on the productivity of pasture-based milk production systems. Animal 5:784-794. doi:10.1017/S1751731110002314

McDonald, K.A., J.W. Penno, J.A. Lancaster, and J.R. Roche. 2008. Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems. J. Dairy Sci. 91:2151-2163. doi:10.3168/jds.2007-0630

Mohammed, R., C.S. Stanton, J.J. Kennelly, J.K. Kramer, J.F. Mee, D.R. Glimm, M. O´Donovan, and J.J. Murphy. 2009. Grazing cows are more efficient than zero-grazed and grass silage-fed cows in milk rumenic acid production. J. Dairy Sci. 92:3874-3893. doi:10.3168/jds.2008-1613

Mojica, J.E., E. Castro, J. Carulla, y C. Lascano. 2017. Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales. Corpoica Cienc. Tecnol. Agropecu. 18:217-232. doi:10.21930/rcta.vol18_num2_art:623

Mojica, J.E., E. Castro, J. León, E. Cárdenas, M.L. Pabón, y J.E. Carulla. 2009. Efecto de la oferta de pasto kikuyo (Pennisetum clandestinum) sobre la producción y calidad composicional de la leche bovina. Livest. Res. Rural Dev. 21(1):1. http://www.lrrd.org/lrrd21/1/moji21001.htm (consultado 10 ene. 2019).

Mojica, R.J.E, R.E. Castro, Z.J. Silva, H.C. Hanzel, y Q.L. García. 2013. Producción y calidad composicional de la leche en función de la alimentación en ganaderías doble propósito del departamento del Cesar. Corpoica, Bogotá, COL. doi:10.21930/978-958-740-164-6

Mojica-Rodríguez, J.E., E. Castro-Rincón, J.E. Carulla-Fornaguera, y C.E. Lascano-Aguilar. 2019. Perfil lipídico en leche de vacas en pastoreo de gramíneas en el trópico seco colombiano. Agron. Mesoam. 30:497-515. doi:10.15517/am.v30i2.34723

Neville, M.C., and M.F. Picciano. 1997. Regulation of milk lipid secretion and composition. Annu. Rev. Nutr. 17:159-183. doi:10.1146/annurev.nutr.17.1.159

O´Brien, B., J.J. Murphy, J.F. Conolly, R. K. Mehra, P. Guinee, and J. Stakelum. 1997. Effect of altering the daily herbage allowance in mid lactation of the composition and processing characteristics of bovine milk. J. Dairy Res. 64:621-626. doi:10.1017/S0022029997002513

Ørskov, E.R., F.D. DeB-Howell, and F. Mould. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 5:295-213.

Ortega, R., J. Espinoza, E. Palacios, A. Palacios, O. Arjona, B. Murillo, y F. Rivera. 2013. Perfil de ácidos grasos en leche de vacas Chinampas (Bos taurus) alimentadas con forraje fresco de matorral sarcocaulescente o heno de alfalfa. Arch. Med. 45:45-51. doi:10.4067/S0301-732X2013000100008

Osorio, M.M., y J.C. Segura. 2005. Factores que afectan la curva de lactancia de vacas Bos taurus x Bos indicus en un sistema doble propósito en el trópico húmedo de Tabasco, México. Téc. Pecu. Méx. 43(1):127-137.

Palmquist, D.L., A.D. Beaulieu, and D.M. Barbano. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76:1753-1771. doi:10.3168/jds.S0022-0302(93)77508-6

Parales, J. 2015. Efecto de la suplementación de aceites vegetales y sus mezclas sobre la fermentación ruminal y el perfil de ácidos grasos en leche. Tesis MSc., Universidad Nacional de Colombia, Bogotá, COL.

Prieto-Manrique, E., L. Mahecha-Ledesma, J. Ángulo-Arizala, y J.E. Vargas-Sánchez. 2016a. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agron. Mesoam. 27:421-437. doi:10.15517/am.v27i2.22022

Prieto-Manrique, E., J.E. Vargas-Sánchez, J. Ángulo-Arizala, y L. Mahecha-Ledesma. 2016b. Grasa y ácidos grasos en leche pastoreando cuatro sistemas de producción. Agron. Mesoam. 28:19-42. doi:10.15517/am.v28i1.22816

Pulido, J.I., M. Romero, S.T. Rivero, y O.A. Duarte. 2002. Atlas de los sistemas de producción bovina. Módulo Región Caribe. CORPOICA, Bogotá, COL.

Rego, O., A. Cabrita, H. Rosa, S. Anes, V. Duarte, A. Fonseca, C. Vouzela, F. Rocha, and R. Bessa. 2016. Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Ital. J. Anim. Sci. 15:76-86. doi:10.1080/1828051X.2016.1141330

Rico, D.E. 2013. Recovery of normal ruminal biohydrogenation and the novo fatty acid synthesis following induction of milk fat depression in dairy cows. Ph.D. Diss., The Pennsylvania State University, PA, USA.

Rico, J.E., B. Moreno, M.L. Pabón, y J. Carulla. 2007. Composición de la grasa láctea de la sabana de Bogotá con énfasis en ácido ruménico - CLA cis-9, trans-11. Rev. Colomb. Cienc. Pecu. 20(1):30-39.

SAS Institute Inc. 2011. SAS/STAT Software version 9.3. SAS Institute Inc., Cary, NC, USA.

Shingfield, K.J., M. Bonnet, and N.D. Scollan. 2013. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7:132-162. doi:10.1017/S1751731112001681

Simopoulos, A. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56:365-379. doi:10.1016/S0753-3322(02)00253-6

Smit, L., A. Baylin, and H. Campos. 2015. Conjugated linoleic acid in adipose tissue and risk of myocardial infarction. Am. J. Clin. Nutr. 92:34-40. doi:10.3945/ajcn.2010.29524

Siri, P., Q. Sin, F. Hu, and R. Krauss. 2010. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 91:535-546. doi:10.3945/ajcn.2009.27725

Soedamah-Muthu, S.S., E.L. Ding, W.K. Al-Delaimy, F.B. Hu, M.F. Engberink, W.C. Willett, and J.M. Geleijnse. 2011. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 93:158-171. doi:10.3945/ajcn.2010.29866

Stanton, C., F. Lawless, G. Kjellmer, D. Harrington, R. Devery, J.F. Connolly, and J. Murphy. 1997. Dietary influences on bovine milk cis-9, trans-11-Conjugated Linoleic Acid content. J. Food Sci. 62:1083-1086. doi:10.1111/j.1365-2621.1997.tb15043.x

Stockdale, C.R. 1994. Effect of diet on the energy required to improve milk protein content in dairy cows. Proc. Aust. Soc. Anim. Prod. 20:378.

Stoobs, T.H., and R.L. Sandland. 1972. The use of a latin square change – over design with dairy cows to detect differences in the quality of tropical pastures. Aust. J. Exp. Agric. 12:463-469. doi:10.1071/EA9720463

Stoop, W.M., H. Bovenhius, J.M.L. Heck, and J.A.M. Van-Arendock. 2009. Effect of lactation stage and energy status on milk fat composition of Holstein - Friesian cows. J. Dairy Sci. 92:1469-1478. doi:10.3168/jds.2008-1468

Toledo, J.M., y R. Schultze-Kraft. 1982. Metodología para la evaluación agronómica de pastos tropicales. En: J.M. Toledo, editor, Manual para la evaluación agronómica: Red internacional de evaluación de pastos tropicales. CIAT, Cali, COL. p. 91-110.

Troegeler-Meynadier, M.A., M.C. Nicot, C. Bayourthe, R. Moncoulon, and F. Enjalbert. 2003. Effects of pH and concentrations of linoleic acid linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. J. Dairy Sci. 86:4054-4063. doi:10.3168/jds.S0022-0302(03)74017-X

Ulbricht, T.L., and D.A. Southgate. 1991. Coronary heart disease: seven dietary factors. Lancet 338:985-992. doi:10.1016/0140-6736(91)91846-M

Van-Soest, P.J., J. Roberton, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2

Varadyova, Z., S. Kisidayová, P. Siroka, and D. Jalc. 2008. Comparison of fatty acid composition of bacterial and protozoal fractions in rumen. fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Anim. Feed Sci. Technol. 144:44-54. doi:10.1016/j.anifeedsci.2007.09.033

Vargas, J.M., J.E. Mojica, M.R. Pabón, y J. Carulla. 2013. Oferta de pasto kikuyo (Pennisetum clandestinum), tercio de lactancia y perfil de ácidos grasos lácteos. Rev. MVZ Córdoba 18(Supl.):3681-3688. doi:10.21897/rmvz.135

Warnjets, J.L., P.H. Robinson, E. Galo, E.J. DePeters, and D. Howes. 2008. Effects of feeding supplemental palimitic acid (C16:0) on performance and milk fatty acid profile of lactating dairy cows under summer heat. Anim. Feed Sci. Technol. 140:241-257. doi:10.1016/j.anifeedsci.2007.03.004

Yamasaki, M., K. Kishihara, I. Ikeda, M. Sugano, and K. Yamada. 1999. A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. J. Am. Oil Chem. Soc. 76:933-938. doi:10.1007/s11746-999-0109-0

/Users/pccmca/Desktop/Revista 30(3)/12. Edwin Castro: Pastoreo sobre perfil lipídico de leche/Última versión/Imagen.jpg

Published

2019-09-01

How to Cite

Mojica-Rodríguez, E., Castro-Rincón, E., Carulla-Fornaguera, J. E., & Lascano-Aguilar, C. E. (2019). Grazing intensity on the lipid profile in bovine milk in the Colombian dry tropic. Agronomía Mesoamericana, 30(3), 783–802. https://doi.org/10.15517/am.v30i3.36312

Most read articles by the same author(s)

<< < 1 2