Improving strategic management through risk analysis: small palm (Elaeis guineensis) oil industrializers, Central America

Authors

DOI:

https://doi.org/10.15517/am.v31i3.40349

Keywords:

risk management, risk analysis, financial modeling, econometric modeling, palm oil business

Abstract

Introduction. Palm cultivation allows oil to be obtained for human and industrial consumption. Some of its development has been achieved through associations of agricultural producers, who have had access to financing to build industrial plants for oil extraction and refinement, which is of great importance to the economy developing countries. Objective. To demonstrate how strategic and risk management influence the profitability and value of the small palm oil industrializer business. Materials and methods. Financial, technical, market, and production indicators were used in a price forecast model. The Monte Carlo simulation method was performed and a time series model was fitted to forecast the international price of palm oil. Subsequently, a univariate structural econometric model was adjusted to forecast revenue based on international price and other variables. Finally, a parameterized cash flow was developed that incorporated the results of the previous models to estimate the value of the business. Results. The international oil price forecast showed high volatility that directly affected the organization’s revenue forecasts and conveyed its effect to cash flows. The value of the business and equity was negative, and in the face of debt restructuring scenarios and the elimination of unproductive assets, they improved considerably. Conclusion. Low-diversified palm oil production companies had a high exposure to changes in international prices which, together with high levels of debt for fixed asset investments with long recovery periods, affect their cash flow, the value of the company, and its assets.

Downloads

Download data is not yet available.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE 19:716-723. doi:10.1109/TAC.1974.1100705

Allman, K., J. Laurito, and M. Loh. 2011. Financial simulation modeling in Excel: A step by step guide. John Wiley & Sons Hoboken, NJ, USA.

Baddi, M.H., y J. Castillo. 2009. Distribuciones probabilísticas de uso común. Int. J. Good Consci. 4(1):149-170.

Bartram, S. 2005. The impact of commodity price risk on firm value: An empirical analysis of corporate commodity price exposures. Mult. Fin. J. 9(3-4):161-187.

Benninga, S. 2014. Financial modeling. 4th ed. The MIT Press, London, GBR.

Bilson, J.F.O. 1994. Managing economic exposure to foreign exchange risk: A case study of American Airlines. In: Y. Amihud, and R.M. Levich, editors, Exchange rates and corporate performance. BeardBooks, WA, USA. p. 221-246.

Bonini, C. 1975. Risk evaluation of investment projects. OMEGA 3:735-750. doi:10.1016/0305-0483(75)90075-4

Botond, B., and R. Bela-Gergely. 2016. The use of Monte Carlo simulation in the assessment of an agricultural investment. Forum Econ. Business 19(127):79-112.

Box, G.E., G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. 2016. Time series analysis: Forecasting and control. 5th ed. John Wiley & Sons, Hoboken, NJ, USA.

Chidambaran, N.K., C.S. Fernando, and P.A. Spindt. 2001. Credit enhancement through financial engineering: Freeport McMoRan’s gold–denominated depositary shares. J. Finan. Econ. 60:487-528. doi:10.1016/S0304-405X(01)00051-4

Chinchilla, C. 2008. Muchas caras de las pudriciones del cogollo (y de flechas) en palma aceitera y la importancia de un enfoque integral para su manejo. ASD Oil Palm Papers 32:11-23.

Correa, T. 2015. Palma aceitera: entre la “flecha seca” y la variación de precios internacionales. INFOCOOP, CRI. http://infocoop.go.cr/index.php/Palma_aceitera (consultado 26 feb. 2019).

Espejo-Miranda, I., F. Fernández-Palacín, M. López-Sánchez, A. Rodríguez-Chía, A. Sánchez-Navas, y C. Valero-Franco. 2006. Estadística descriptiva y probabilidad. teoría y problemas. 3th ed. Servicio de Publicaciones de la Universidad de Cádiz, Cádiz, ESP.

Fernández, P. 2001. Valoración de empresas. Universidad de Harvard, Cambridge, MA, USA.

González-Cárdenas, A. 2017. La agroindustria de la palma de aceite en América. Rev. Palmas 37(especial):215-228.

Haushalter, G.D. 2000. Financing policy, basis risk and corporate hedging: Evidence from oil and gas producers. J. Finan. 55:107-152. doi:10.1111/0022-1082.00202

Hojjati, S., and N. Noudehi. 2015. The use of Monte Carlo simulation in quantitative risk assessment of IT projects. Int. J. Adv. Network. Appl. 7:2616-2621.

ISTA Mielke GmbH. 2017. Oil world. Palm oil (Malaysia), 5% bulk: c.i.f. N. W. Europe. Index Mundi. https://www.indexmundi.com/commodities/?commodity=palm-oil&months=120 (accessed Mar. 5, 2019).

Janeková, J. 2015. Monte Carlo simulation: Risk analysis tool of investment projects. Transfer Inovácií 32:261-263.

Junkes, M.B., A.P. Tereso, and P.S.L.P. Afonso. 2015. The importance of risks assessment in the context of investment project management: a case study. Proc. Computer Sci. 64:902-910. doi:10.1016/j.procs.2015.08.606

Merková, M., J. Drábek, and D. Jelačic. 2013. Application of risk analysis in business investment decision-making. Drvna industrija 64:313-322.

Merková, M., and J. Drábek. 2015. Use of risk analysis in investment measurement and management. Proc. Econ. Finance 34:656-662. doi:10.1016/S2212-5671(15)01682-2

Meza, C. 2012. La “Flecha Seca” de la palma aceitera: aspectos técnicos y estrategias de manejo. Acta Fitosanitaria 51(2):2-4.

Ong, T.S., W.F. Tan, and B.H. Teh. 2012. Hedging effectiveness of crude palm oil futures market in Malaysia. World Appl. Sci. J. 19:556-565. doi:10.5829/idosi.wasj.2012.19.04.1447

Ordoñez, R., y P. Valencia. 2018. Apoyando la palma sostenible en América Latina y el Caribe. PCNPost. https://pcnpost.com/apoyando-la-palma-sostenible-america-latina-caribe/ (consultado 12 mar. 2018).

Petersen, M.A., and S.R. Thiagarajan. 2000. Risk measurement and hedging: with and without derivatives. Finan. Manag. 29(4):5-30. doi:10.2307/3666367

Poulter, S. 1998. Monte Carlo simulation in environmental risk assessment--science, policy and legal issues. RISK: Health Safety Environ. 9(1):7-26.

Proctor, K.S. 2010. Building financial models with Microsoft Excel. 2nd ed. John Wiley & Sons, Hoboken, NJ, USA.

Quevedo, F. 2011. Distribución normal. Medwave 11(5):1-5. doi:10.5867/medwave.2011.05.5033

Sapag, N., y R. Sapag. 2008. Preparación y evaluación de proyectos. 5ta ed. McGraw Hill, Bogotá, COL.

Savvides, S. 1994. Risk analysis in investment appraisal. Project Appraisal 9:3-18. doi:10.1080/02688867.1994.9726923

Simões, D., and L. Scherrer. 2014. Monte Carlo simulation applied to economic and financial analysis of an agribusiness project. Tekhne Logos 5(2):2-14.

Svatoňová, T., D. Herák, and A. Kabutey. 2015. Financial profitability and sensitivity analysis of palm oil plantation in Indonesia. Acta Univers. Agric. Silvic. Mendel. Brunensis 63:1365-1373. doi:10.11118/actaun201563041365

Tan, S.R., H. Ting, N. Lajuni, Y. Yacob, and J.W. Siong. 2018. Evaluating Malaysian palm oil industry using discounted cash flow approach. Int. Res. J. Finan Econ. 167:17-25

Tufano, P. 1996. Who manages risk? An empirical examination of the risk management practices in the gold mining industry. J. Finance 51:1097-1137. doi:10.1111/j.1540-6261.1996.tb04064.x

Varangis, P., and D.F. Larson. 1996. Dealing with commodity price uncertainty. Policy research working paper No. 1167. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=620615 (accessed Mar. 28, 2018).

Published

2020-09-01

How to Cite

Paniagua-Molina, J., & Solórzano-Thompson, J. (2020). Improving strategic management through risk analysis: small palm (Elaeis guineensis) oil industrializers, Central America. Agronomía Mesoamericana, 31(3), 619–633. https://doi.org/10.15517/am.v31i3.40349