Compositional and sensory quality of beef and its determination by near infrared
DOI:
https://doi.org/10.15517/am.v32i3.40607Keywords:
Infrared spectrophotometry, meat, consumers, perceptionAbstract
Introduction. Beef is a food of high biological value for human nutrition; it is a source of fat, protein, vitamins, and minerals. However, aspects associated with the environmental impact of the production system and association with non-communicable diseases have promoted new protein consumption trends (vegetable, insects, lab protein). So, it is necessary to identify and offer information on the attributes of the meat that favor consumer acceptance quickly and reliably through non-destructive and environmentally friendly techniques such as near-infrared. Objective. To review the experiences associated with the implementation of Near-Infrared Spectroscopy (NIRS) as an alternative in the determination of beef quality. Development. Meat attributes with the greatest relationship with consumers can be segmented into appearance, consumption, and confidence. These characteristics involve intrinsic elements of the meat, such as color, fat, and tenderness. Given the limitations in the application of laboratory techniques for the determination of meat attributes, the application of the NIRS is reviewed with successful experiences in characteristics of interest to consumers. Additionally, the application of NIRS in production lines and other applications of interest in the industry, such as detection of meat anomalies and product authentication, is studied. Conclusion. The application of the NIRS allows to determine quickly and reliably attributes of the quality of the meat that have a close relationship with the consumer. This tool allows to obtain results that respond to the production speed of the industry, and to determinate and authenticate aspects related to meat and the production system.
Downloads
References
Aboah, J., & Lees, N. (2020). Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Science, 166(April), Article 108142. https://doi.org/10.1016/j.meatsci.2020.108142
Adzitey, F., & Nurul, H. (2011). Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences - a mini review. International Food Research Journal, 18(1), 11–20.
Agelet, L. E., & Hurburgh, C. R. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40(4), 246–260. https://doi.org/10.1080/10408347.2010.515468
Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A review of optical nondestructive visual and Near-Infrared methods for food quality and safety. International Journal of Spectroscopy, 2013, Article 341402. https://doi.org/10.1155/2013/341402
Alomar, D., Gallo, C., Castañeda, M., Fuchslocher, R., Castaneda, M., & Fuchslocher, R. (2003). Chemical and discriminant analysis of bovine meat by near infrared reflectance spectroscopy (NIRS). Meat Science, 63(4), 441–450. https://doi.org/10.1016/S0309-1740(02)00101-8
American Meat Science Association. (2016). Research guidelines for cookery, sensory evaluation, and instrumental tenderness measurements of meat. American Meat Science Association. https://doi.org/10.1590/s0103-84782012000400025
Andrés, S., Murray, I., Navajas, E. A., Fisher, A. V., Lambe, N. R., & Bünger, L. (2007). Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Science, 76(3), 509-516. https://doi.org/10.1016/j.meatsci.2007.01.011
Angulo, J., Nürnberg, K., Mahecha, L., Olivera, M., & Dannenberger, D. (2012). Manual of lipid extraction, methylation and gas chromatography, for the study of different tissues in ruminant research. Biogénesis. https://revistas.udea.edu.co/index.php/biogenesis/article/view/326020/20783311
Ardeshiri, A., & Rose, J. M. (2018). How Australian consumers value intrinsic and extrinsic attributes of beef products. Food Quality and Preference, 65(October), 146–163. https://doi.org/10.1016/j.foodqual.2017.10.018
Arenas-De-Moreno, L., Jerez-Timaure, N., Valerio-Hernández, J., Huerta-Leidenz, N. O., & Rodas-González, A. (2020). Attitudinal determinants of beef consumption in Venezuela: A retrospective survey. Foods, 9, Article 202. https://doi.org/10.3390/foods9020202
Association of Official Agricultural Chemists (2000). Fat (crude) or ether extract in meat 960.39-1960. AOAC Int.
Bhat, M. M., Jalal, H., Para, P. A., Bukhari, S. A., Ganguly, S., Bhat, A. A., Wakchaure, R., & Qadri, K. (2015). Fraudulent adulteration / Substitution of meat: A review. Journal of Recent Research and Applied Studies, 2(12), 21–33.
Barragán-Hernández, W., Aalhus, J. L., Penner, G., Dugan, M. E. R., Juárez, M., López-Campos, Ó., Vahmani, P., Segura, J., Angulo, J., & Prieto, N. (2021a). Authentication of barley-finished beef using visible and near infrared spectroscopy (Vis-NIRS) and different discrimination approaches. Meat Science, 172, Article 108342. https://doi.org/10.1016/j.meatsci.2020.108342
Barragán-Hernández, W., Mahecha-Ledesma, L., Angulo-Arizala, J., & Olivera-Angel, M. (2020a). Near-infrared spectroscopy as a beef quality tool to predict consumer acceptance. Foods, 9(8), 1–15. https://doi.org/10.3390/foods9080984
Barragán Hernández, W. A., Mahecha-Ledesma, L., Burgos-Paz, W. O., Olivera-Angel, M. M., & Angulo-Arizala, J. (2020b). Using near-infrared spectroscopy to determine intramuscular fat and fatty acids of beef applying different prediction approach. Journal of Animal Science, 98(11), Article 342. https://doi.org/10.1093/jas/skaa342
Barragán-Hernández, W., Mahecha-Ledesma, L., Olivera-Angel, M., & Angulo-Arizala, J. (2021b). ¿Cómo los consumidores valoran atributos de calidad de carne bovina y su disposición a pago? Revista Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 1–15.
Carpenter, C. E., Cornforth, D. P., & Whittier, D. (2001). Consumer preferences for beef color and packaging did not affect eating satisfaction. Meat Science, 57(4), 359–363. https://doi.org/10.1016/S0309-1740(00)00111-X
Cecchinato, A., de Marchi, M., Penasa, M., Casellas, J., Schiavon, S., & Bittante, G. (2012). Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy. Journal of Animal Science, 90(2), 429-438. https://doi.org/10.2527/jas.2011-4150
Chapman, J., Elbourne, A., Truong, V. K., & Cozzolino, D. (2020). Shining light into meat – a review on the recent advances in in vivo and carcass applications of near infrared spectroscopy. International Journal of Food Science and Technology, 55(3), 935–941. https://doi.org/10.1111/ijfs.14367
Cho, S. H., Kim, J., Park, B. Y., Seong, P. N., Kang, G. H., Kim, J. H., Jung, S. G., Im, S. K., & Kim, D. (2010). Assessment of meat quality properties and development of a palatability prediction model for Korean Hanwoo steer beef. Meat Science, 86(1), 236–242. https://doi.org/10.1016/j.meatsci.2010.05.011
Cocking, C., Walton, J., Kehoe, L., Cashman, K. D., & Flynn, A. (2020). The role of meat in the European diet: current state of knowledge on dietary recommendations, intakes and contribution to energy and nutrient intakes and status. Nutrition Research Reviews, 33(2), 181–189. https://doi.org/10.1017/S0954422419000295
Cozzolino, D. (2016). 7 – Near infrared spectroscopy and food authenticity. In M. Espiñeira, & F. J. Santaclara (Eds.), Advances in Food Traceability Techniques and Technologies (pp. 119–136). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100310-7.00007-7
Cozzolino, D., & Murray, I. (2002). Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 10(1), 37–44. https://doi.org/10.1255/jnirs.319
Cozzolino, D., & Murray, I. (2004). Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT - Food Science and Technology, 37(4), 447–452. https://doi.org/10.1016/j.lwt.2003.10.013
Damez, J. L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132–149. https://doi.org/10.1016/j.meatsci.2008.05.039
De-Marchi, M., Berzaghi, P., Boukha, A., Mirisola, M., & Gallo, L. (2007). Use of near infrared spectroscopy for assessment of beef quality traits. Italian Journal of Animal Science, 6(Suppl. 1), 421–423. https://doi.org/10.4081/ijas.2007.1s.421
de-Olivera, R., (2014). Modelos de calibração multivariada por NIRS para a predição de características de qualidade da carne bovina [Tese de Doutorado, não publicada]. Universidade Federal de Goiás.
Doosti, A., Ghasemi Dehkordi, P., & Rahimi, E. (2014). Molecular assay to fraud identification of meat products. Journal of Food Science and Technology, 51(1), 148–152. https://doi.org/10.1007/s13197-011-0456-3
Drey, L., Legako, J., Brooks, J., Miller, M., & O’quinn, T. (2017). The contribution of tenderness, juiciness, and flavor to overall consumer beef eating experience. Meat and Muscle Biology, 1(3), 13–13. https://doi.org/10.221751/rmc2017.012
Ekmekcioglu, C., Wallner, P., Kundi, M., Weisz, U., Haas, W., & Hutter, H. P. (2018). Red meat, diseases, and healthy alternatives: A critical review. Critical Reviews in Food Science and Nutrition, 58(2), 247–261. https://doi.org/10.1080/10408398.2016.1158148
Flowers, S., Hamblen, H., Leal-Gutiérrez, J. D., Elzo, M. A., Johnson, D. D., & Mateescu, R. G. (2018a). Fatty acid profile, mineral content, and palatability of beef from a multibreed Angus-Brahman population. Journal of Animal Science, 96(10), 4264–4275. https://doi.org/10.1093/jas/sky300
Flowers, S., McFadden, B., Carr, C., & Mateescu, R. (2018b). Understanding beef nutritional attributes contributes to consumers’ willingness-to-pay for a healthier product. Meat and Muscle Biology, 2(2), 15–16. https://doi.org/10.221751/rmc2018.014
Flowers, S., McFadden, B. R., Carr, C. C., & Mateescu, R. G. (2019). Consumer preferences for beef with improved nutrient profile. Journal of Animal Science, 97(12), 4699–4709. https://doi.org/10.1093/jas/skz327
Font-i-Furnols, M., Fulladosa, E., Prevolnik Povše, M., & Čandek-Potokar, M. (2015). Future trends in non-invasive technologies suitable for quality determinations In M. Font-i-Furnols, M. Čandek-Potokar, C. Maltin, & M. Prevolnik Povše (Eds.), A Handbook of Reference Methods for Meat Quality Assessment (pp. 90-104). European Cooperation in Science and Technology.
Font-i-Furnols, M., & Guerrero, L. (2014). Consumer preference, behavior and perception about meat and meat products: An overview. Meat Science, 98(3), 361–371. https://doi.org/10.1016/j.meatsci.2014.06.025
Giaretta, E., Mordenti, A., Palmonari, A., Brogna, N., Canestrari, G., Belloni, P., Cavallini, D., Mammi, L., Cabbri, R., & Formigoni, A. (2019). NIRs calibration models for chemical composition and fatty acid families of raw and freezedried beef: a comparison. Journal of Food Composition and Analysis, 83, Article 103257. https://doi.org/10.1016/j.jfca.2019.103257
Girolami, A., Napolitano, F., Faraone, D., & Braghieri, A. (2013). Measurement of meat color using a computer vision system. Meat Science, 93(1), 111–118. https://doi.org/10.1016/j.meatsci.2012.08.010
Gonzalez, J. M., & Phelps, K. J. (2018). United States beef quality as chronicled by the national beef quality audits, beef consumer satisfaction projects, and national beef tenderness surveys - A review. Asian-Australasian Journal of Animal Sciences, 31(7), 1036–1042. https://doi.org/10.5713/ajas.18.0199
Grunert, K. G., Bredahl, L., & Brunsø, K. (2004). Consumer perception of meat quality and implications for product development in the meat sector - A review. Meat Science, 66(2), 259–272. https://doi.org/10.1016/S0309-1740(03)00130-X
Henchion, M. M., McCarthy, M., & Resconi, V. C. (2017). Beef quality attributes: A systematic review of consumer perspectives. Meat Science, 128, 1–7. https://doi.org/10.1016/j.meatsci.2017.01.006
Hocquette, J. F., Cassar-Malek, I., Jurie, C., Bauchart, D., Picard, B., & Renand, G. (2012). Relationships between muscle growth potential, intramuscular fat content and different indicators of muscle fibre types in young Charolais bulls. Animal Science Journal, 83(11), 750–758. https://doi.org/10.1111/j.1740-0929.2012.01021.x
Hocquette, J. F., Ellies-Oury, M. P., Legrand, I., Pethick, D., Gardner, G., Wierzbicki, J., & Polkinghorne, R. J. (2020). Research in beef tenderness and palatability in the era of Big Data. Meat and Muscle Biology, 4(2), Article 9488. https://doi.org/10.22175/mmb.9488
Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. https://doi.org/10.1016/S0309-1740(98)00034-5
Honikel, K. O., Kim, C. J., Hamm, R., & Roncales, P. (1986). Sarcomere shortening of prerigor muscles and its influence on drip loss. Meat Science, 16(4), 267–282. https://doi.org/10.1016/0309-1740(86)90038-0
International Organization for Standardization (1999). Meat and meat products: Measurement of pH 2917:1999. ISO.
Ijaz, M., Li, X., Zhang, D., Hussain, Z., Ren, C., Bai, Y., & Zheng, X. (2020). Association between meat color of DFD beef and other quality attributes. Meat Science, 161, Article 107954. https://doi.org/10.1016/j.meatsci.2019.107954
Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. https://doi.org/10.1016/j.meatsci.2013.04.044
Joseph, P., Searing, A., Watson, C., & McKeague, J. (2020). Alternative proteins: Market research on consumer trends and emerging landscape. Meat and Muscle Biology, 4(2), Article 16. https://doi.org/10.22175/mmb.11225
Juárez, M., Aldai, N., López-Campos, Ó., Dugan, M. E. R., Uttaro, B., & Aalhus, J. L. (2012). Beef texture and juiciness In Y. H. Hui (Ed.), Handbook of meat and processing (2nd Ed., pp. 177–206). CRC Press. https://doi.org/10.1201/b11479-13
Khan, M. I., Jo, C., & Tariq, M. R. (2015). Meat flavor precursors and factors influencing flavor precursors-A systematic review. Meat Science, 110, 278–284. https://doi.org/10.1016/j.meatsci.2015.08.002
King, D. A., Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M. (2009). Fresh meat texture and tenderness. In J. P. Kerry, & D. Ledward (Eds.), Improving the sensory and nutritional quality of fresh meat (pp. 61-88). Woodhead Publishing Limited. https://doi.org/10.1533/9781845695439.1.61
Li, X., Feng, F., Gao, R., Wang, L., Qian, Y., Li, C., & Zhou, G. (2015). Application of near infrared reflectance (NIR) spectroscopy to identify potential PSE meat. Journal of the Science of Food and Agriculture, 96(9), 3148-3156. https://doi.org/10.1002/jsfa.7493
Li, X., Jensen, K. L., Clark, C. D., & Lambert, D. M. (2016). Consumer willingness to pay for beef grown using climate friendly production practices. Food Policy, 64, 93–106. https://doi.org/10.1016/j.foodpol.2016.09.003
Liu, J., Ellies-Oury, M. P., Chriki, S., Legrand, I., Pogorzelski, G., Wierzbicki, J., Farmer, L., Troy, D., Polkinghorne, R., & Hocquette, J. F. (2020). Contributions of tenderness, juiciness and flavor liking to overall liking of beef in Europe. Meat Science, 168(April), Article 108190. https://doi.org/10.1016/j.meatsci.2020.108190
Løvland, A., & Wold, J. P. (2020). NIR spectroscopic techniques for quality and process control in the meat industry. Meat and Muscle Biology, 4(2), Article 10020. https://doi.org/10.22175/mmb.10020
Lusk, J. L. (2019). Consumer beliefs about healthy foods and diets. PLoS ONE, 14(10), Article e0223098. https://doi.org/10.1371/journal.pone.0223098
Magalhães, A. F., Teixeira, G. H., Ríos, A. C., Silva, D. B., Mota, L. F., Muniz, M. M., de-Morais, C. de L., de-Lima, K. M., Júnior, L. C., Baldi, F., Carvalheiro, R., de-Oliveira, H., Chardulo, L. A., & de-Albuquerque, L. G. (2018). Prediction of meat quality traits in Nelore cattle by near-infrared reflectance spectroscopy. Journal of Animal Science, 96(10), 4229–4237. https://doi.org/10.1093/jas/sky284
Maltin, C., Balcerzak, D., Tilley, R., & Delday, M. (2003). Determinants of meat quality: tenderness. Proceedings of the Nutrition Society, 62, 337–347. https://doi.org/10.1079/PNS2003248
Mamani-Linares, L. W., Gallo, C., & Alomar, D. (2012). Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Science, 90(2), 378–385. https://doi.org/10.1016/j.meatsci.2011.08.002
Mancini, R. A. (2009). Meat color. In J. P. Kerry, & D. Ledward (Eds.), Improving the sensory and nutritional quality of fresh meat (pp. 89–110). Woodhead Publishing Limited. https://doi.org/10.1533/9781845695439.1.89
Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121. https://doi.org/10.1016/j.meatsci.2005.03.003
Manley, M., & Baeten, V. (2018). Spectroscopic technique: Near Infrared Spectroscopy (NIR). In D. W. Sun (Ed.), Modern Techniques for Food Authentication (2nd ed., pp. 51–102). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814264-6.00003-7
McCarthy, S. N., Henchion, M., White, A., Brandon, K., & Allen, P. (2017). Evaluation of beef eating quality by Irish consumers. Meat Science, 132(April), 118–124. https://doi.org/10.1016/j.meatsci.2017.05.005
Merlino, V. M., Borra, D., Girgenti, V., Dal Vecchio, A., & Massaglia, S. (2018). Beef meat preferences of consumers from Northwest Italy: Analysis of choice attributes. Meat Science, 143(September), 119–128. https://doi.org/10.1016/j.meatsci.2018.04.023
Meyerding, S. G. H., Gentz, M., Altmann, B., & Meier-Dinkel, L. (2018). Beef quality labels: A combination of sensory acceptance test, stated willingness to pay, and choice-based conjoint analysis. Appetite, 127, 324-333. https://doi.org/10.1016/j.appet.2018.05.008
Miller, R. (2020). Drivers of consumer liking for beef, pork, and lamb: A review. Foods, 9(4), Article 428. https://doi.org/10.3390/foods9040428
Miranda-de-la-Lama, G. C., Estévez-Moreno, L. X., Sepúlveda, W. S., Estrada-Chavero, M. C., Rayas-Amor, A. A., Villarroel, M., & María, G. A. (2016). Mexican consumers’ perceptions and attitudes towards farm animal welfare and willingness to pay for welfare friendly meat products. Meat Science, 125, 106-113. https://doi.org/10.1016/j.meatsci.2016.12.001
Mitsumoto, M., & Ozawa, S. (1991). Near-infrared spectroscopy determination of physical and chemical characteristics in beef cuts. Journal of Food Science 56(6), 1493–1496. https://doi.org/10.1111/j.1365-2621.1991.tb08623.x
Morsy, N., & Sun, D. W. (2013). Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Science, 93(2), 292–302. https://doi.org/10.1016/j.meatsci.2012.09.005
Mourot, B. P., Gruffat, D., Durand, D., Chesneau, G., Mairesse, G., & Andueza, D. (2015). Breeds and muscle types modulate performance of near-infrared reflectance spectroscopy to predict the fatty acid composition of bovine meat. Meat Science, 99, 104–112. https://doi.org/10.1016/j.meatsci.2014.08.014
Ngapo, T. M., Braña Varela, D., & Rubio-Lozano, M. S. (2017). Mexican consumers at the point of meat purchase. Beef choice. Meat Science, 134, 34–43. https://doi.org/10.1016/j.meatsci.2017.07.013
Paredi, G., Raboni, S., Bendixen, E., de Almeida, A. M., & Mozzarelli, A. (2012). “Muscle to meat” molecular events and technological transformations: The proteomics insight. Journal of Proteomics, 75(14), 4275–4289. https://doi.org/10.1016/j.jprot.2012.04.011
Patel, N., Toledo-Alvarado, H., Cecchinato, A., & Bittante, G. (2020). Predicting the content of 20 minerals in beef by different portable near-infrared (NIR) spectrometers. Foods, 9(10), Article 1389. https://doi.org/10.3390/foods9101389
Picard, B., Gagaoua, M., & Gagaoua, M. (2020). Muscle fiber properties in cattle and their relationships with meat qualities: An overview. Journal of Agricultural and Food Chemistry, 68(22), 6021-6039. https://doi.org/10.1021/acs.jafc.0c02086
Prevolnik, M., Candek-Potokar, M., & Škorjanc, D. (2010). Predicting pork water-holding capacity with NIR spectroscopy in relation to different reference methods. Journal of Food Engineering, 98(3), 347–352. https://doi.org/10.1016/j.jfoodeng.2009.11.022
Prieto, N., Andrés, S., Giráldez, F. J., Mantecón, A. R., & Lavín, P. (2008). Ability of near infrared reflectance spectroscopy (NIRS) to estimate physical parameters of adult steers (oxen) and young cattle meat samples. Meat Science, 79(4), 692–699. https://doi.org/10.1016/j.meatsci.2007.10.035
Prieto, N., Ross, D. W., Navajas, E. A., Nute, G. R., Richardson, R. I., Hyslop, J. J., & Roehe, R. (2009). On-line application of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics of beef quality. Meat Science, 83(1), 96-103. https://doi.org/10.1016/j.meatsci.2009.04.005
Prieto, N., López-Campos, Suman, S. P., Uttaro, B., Rodas-González, A., & Aalhus, J. L. (2018). Exploring innovative possibilities of recovering the value of dark-cutting beef in the Canadian grading system. Meat Science, 137, 77–84. https://doi.org/10.1016/j.meatsci.2017.11.013
Prieto, N, López-Campos, Ó., Zijlstra, R. T., Uttaro, B., & Aalhus, J. L. (2014). Discrimination of beef dark cutters using visible and near infrared reflectance spectroscopy. Canadian Journal of Animal Science, 94(3), 445–454. https://doi.org/10.4141/cjas-2014-024
Prieto, N, Pawluczyk, O., Dugan, M. E. R., & Aalhus, J. L. (2017). A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Applied Spectroscopy, 71(7), 1403-1426. https://doi.org/10.1177/0003702817709299
Prieto-Benavides, N. (2006). Aplicación de la tecnología NIRS para estimar parámetros indicativos de la calidad de la carne de vacuno [Disertación Doctoral, Universidad de León]. Respositorio del Consejo Superior de Investigaciones Científicas. http://digital.csic.es/handle/10261/21982
Realini, C. E., Kallas, Z., Pérez-Juan, M., Gómez, I., Olleta, J. L., Beriain, M. J., Albertí, P., & Sañudo, C. (2014). Relative importance of cues underlying Spanish consumers’ beef choice and segmentation, and consumer liking of beef enriched with n-3 and CLA fatty acids. Food Quality and Preference, 33, 74–85. https://doi.org/10.1016/j.foodqual.2013.11.007
Ripoll, G., Albertí, P., Panea, B., Olleta, J. L., & Sañudo, C. (2008). Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef. Meat Science, 80(3), 697–702. https://doi.org/10.1016/j.meatsci.2008.03.009
Roberts, J. J., & Cozzolino, D. (2016). An overview on the application of chemometrics in food science and technology—An approach to quantitative data analysis. Food Analytical Methods, 9(12), 3258–3267. https://doi.org/10.1007/s12161-016-0574-7
Rosenvold, K., Micklander, E., Hansen, P. W., Burling-Claridge, R., Challies, M., Devine, C., & North, M. (2009). Temporal, biochemical and structural factors that influence beef quality measurement using near infrared spectroscopy. Meat Science, 82(3), 379–388. https://doi.org/10.1016/j.meatsci.2009.02.010
Sakadevan, K., & Nguyen, M. L. (2017). Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147–184. https://doi.org/10.1016/bs.agron.2016.10.002
Savoia, S., Albera, A., Brugiapaglia, A., Di Stasio, L., Ferragina, A., Cecchinato, A., & Bittante, G. (2020). Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers. Meat Science, 161(March), Article 108017. https://doi.org/10.1016/j.meatsci.2019.108017
Scollan, N. D., Dannenberger, D., Nuernberg, K., Richardson, I., MacKintosh, S., Hocquette, J. F., & Moloney, A. P. (2014). Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 97(3), 384–394. https://doi.org/10.1016/j.meatsci.2014.02.015
Scollan, N. D., Price, E. M., Morgan, S. A., Huws, S. A., & Shingfield, K. J. (2017). Can we improve the nutritional quality of meat? Proceedingsof the Nutrition Society, 76(4), 603–618. https://doi.org/10.1017/S0029665117001112
Sierra, V., Aldai, N., Castro, P., Osoro, K., Coto-Montes, A., & Oliván, M. (2008). Prediction of the fatty acid composition of beef by near infrared transmittance spectroscopy. Meat Science, 78(3), 248–255. https://doi.org/10.1016/j.meatsci.2007.06.006
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(July), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Su, H., Sha, K., Zhang, L., Zhang, Q., Xu, Y., Zhang, R., & Sun, B. (2014). Development of near infrared reflectance spectroscopy to predict chemical composition with a wide range of variability in beef. Meat Science, 98(2), 110-114. https://doi.org/10.1016/j.meatsci.2013.12.019
Su, H., Zhang, S., Li, H., Xie, P., & Sun, B. (2018). Using near-infrared reflectance spectroscopy to predict physical parameters of beef. Spectroscopy Letters, 51(4), 163–168. https://doi.org/10.1080/00387010.2018.1442355
Tøgersen, G., Isaksson,T., Nilsen, B. N., Bakker, E. A., & Hildrum, K. I. (1999). On-line NIR analysis of fat, water and protein in industrial scale ground meat batches. Meat Science, 51(1), 97-102. https//doi.org/10.1016/s0309-1740(98)00106-5
Ton, S., De Marchi, M., Manfrin, D., Meneghesso, M., Cassandro, M., & Penasa, M. (2015). Use of near infrared technology to predict fatty acid groups in commercial ground meat products. Poljoprivreda, 21(Supplement 1), 232-236. https://doi.org/10.18047/poljo.21.1.sup.55
Troy, D. J., & Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86(1), 214–226. https://doi.org/10.1016/j.meatsci.2010.05.009
Van-Loo, E. J., Caputo, V., & Lusk, J. L. (2020). Consumer preferences for farm-raised meat, lab-grown meat, and plant-based meat alternatives: Does information or brand matter? Food Policy, 95, Article 101931. https://doi.org/10.1016/j.foodpol.2020.101931
Warriss, P. D. (2000). Meat science: An introductory text (2nd Ed). CABI. https://doi.org/10.1016/S0309-1740(00)00053-X
Weeranantanaphan, J., Downey, G., Allen, P., & Sun, D. W. (2011). A review of near infrared spectroscopy in muscle food analysis: 2005-2010. Journal of Near Infrared Spectroscopy, 19(2), 61–104. https://doi.org/10.1255/jnirs.924
Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De-Vries, W., Sibanda, L. M., … Murray, C. J. L. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492. https://doi.org/10.1016/s0140-6736(18)31788-4
Workman, J. (2016). The concise handbook of analytical spectroscopy : theory, applications, and reference materials. World Scientific Publishing. https://doi.org/10.1142/8800
Yang, S. H., Suhandoko, A. A., & Chen, D. (2020). Impact of nutritional information on consumers’ willingness to pay for meat products in traditional wet markets of taiwan. Foods, 9(8), Article 1086. https://doi.org/10.3390/foods9081086
Young, O., West, J., Hart, A., & van Otterdijk, F. F. (2004). A method for early determination of meat ultimate pH. Meat Science, 66(2), 493–498. https://doi.org/10.1016/S0309-1740(03)00140-2
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).