Endophytic colonization of the nematophagous fungus Pochonia chlamydosporia in Solanaceae and Cucurbitaceae crops
DOI:
https://doi.org/10.15517/am.v32i3.45506Keywords:
plant bio-stimulation, autochthonous strains, endophyte fungi, vegetablesAbstract
Introduction. The fungal species of the genus Pochonia are important for the management of phytoparasitic nematodes. Some of them endophyte colonize their plant hosts and provide adaptability, plant bio-stimulation, and resistance induction; these advantages are essential for the selection of strains to be used in the bio-management of phytonematodes. Objective. To evaluate the endophytic colonization and plant bio-stimulation by the nematophagous strains IMI SD 187 and 193 of P. chlamydosporia on horticultural species of the Solanaeceae and Cucurbitaceae families. Materials and methods. The experiment was carried out inside greenhouses at the National Center for Animal and Plant Health, Mayabeque province, Cuba. Two strains of P. chlamydosporia were used, named IMI SD 187 and 193, as well as cultivars of tomato (S. lycopersicum) cv. HA 3057, pepper (Capsicum annuum L.) cv. Grandisimo, cucumber (Cucumis sativus L.) cv. INIVIT P 2007, and melon (Cucumis melo L.) cv. Zest F1. In both strains, endophytic, substrate, and root colonization, as well as some plant growth parameters were evaluated. Results. The evaluated strains colonized between 3 and 16 % of the interior of the roots. The IMI SD 187 strain colonized all the evaluated species, while 193 could not colonize the melon; however, both strains colonized the root and the substrate with values between 2x103 and 2x104 CFU g-1, respectively. IMI SD 187 reached the highest bio-stimulation values in length and fresh mass of the roots in pepper. Conclusion. The two native strains of P. chlamydosporia colonized the studied species and the highest bio-stimulation of growth was obtained with IMI SD 187 in the pepper cultivar.
Downloads
References
Arévalo, J., Hernández, M. Á., Lamz, A., Montes de Oca, N., & Hidalgo-Díaz, L. (2019). Efecto de Pochonia chlamydosporia var. catenulata (Goddard) Zare y Gams como endófito facultativo en frijol (Phaseolus vulgaris L.). Revista Protección Vegetal, 34(2), 1–10.
Avelar, T. S., Vasconcelos, S., Ney, I., Coutinho, B., Megumi, M. C., de Araújo, J. V., & de Freitas, L. (2018). Nematophagus fungi increasing phosphorus uptake and promoting plant growth. Biological Control, 123, 71–75. https://doi.org/10.1016/j.biocontrol.2018.05.003
Bordallo, J. J., López-Llorca, L. V., Jansson, H. B., Salinas, J., Persmark, L., & Asensio, L. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist, 154, 491–499.
Di-Rienzo, J. A., Casanoves, F., González, L., Tablada, M., & Roblejo, C. W. (2008). InfoStat, versión 2008. Manual del Usuario. Grupo InfoStat, FCA, Universidad Nacional de Córdoba (2da Ed.). Editorial Brujas Argentina.
Ghahremani, Z., Escudero, N., Saus, E., Gabaldón, T., & Sorribas, F. J. (2019). Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Frontiers in Plant Science, 10, Article 945. https://doi.org/10.3389/fpls.2019.00945
Gutiérrez, E., Rodríguez, J. L., & Rivero, M. (2018). Flora del bosque pluvial montano y su relación con variables ambientales en el Parque Nacional Turquino de Cuba. Ciencia y Tecnología, 11(2), 57–67. https://doi.org/10.18779/cyt.v11i2.240
Hernández, M. A., Arévalo, J., Marrero, D., & Hidalgo-Díaz, L. (2016). Efecto de KlamiC® en la estimulación del crecimiento de vitroplantas de plátanos y bananos. Cultivos Tropicales, 37(4), 168–172. https://doi.org/10.13140/RG.2.2.25696.69120
Hidalgo-Díaz, L., & Ceiro, W. G. (2017). Interacción entre Pochonia chlamydosporia var. catenulata (Kamyschko ex Barron y Onions) Zare y Gams y Meloidogyne incognita (Kofoid y White) Chitwood en tomate en presencia de NaCl. Revista de Protección Vegetal, 32(1), 76–81.
Hidalgo-Díaz, L., Franco-Navarro, F., & Freitas, L. G. (2017). Pochonia chlamydosporia microbial products to manage plant-parasitic Nematodes: Case Studies from Cuba, Mexico & Brazil. In R. H. Manzanilla-López, & L. V. López-Llorca (Eds.), Perspectives in sustainable nematode management through Pochonia chlamydosporia Applications for root and rhizosphere health, sustainability in plant and crop protection (1st Ed., 311–342), Springer, Chan. https://doi.org/10.1007/978-3-319-59224-4_15
Kerry, B. R., & Bourne, J. M. (Eds.). (2002). A Manual for Research on Verticillium chlamydosporium, a Potential Biological Control Agent for Root-Knot Nematodes. University of Gent.
Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In K. Davies, & Y. Spiegel (Eds.). Biological Control of Plant-Parasitic Nematodes. Progress in Biological Control (pp. 171–182). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_7
Latz, M. A. C., Jensen, B., Collinge, D. B., & Jørgensen, H. J. L. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology and Diversity, 11(5–6), 555–567. https://doi.org/10.1080/17550874.2018.1534146
López-Llorca, L. V., Bordallo, J. J., Salinas, J., Monfort, E., & Lopez-Serna, M. L. (2002). Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 33(1), 61–67. https://doi.org/10.1016/S0968-4328(00)00070-6
López-Llorca, L. V., & Maciá-Vicente, J. G. (2009). Plant symbioses with fungal endophytes: perspectives on conservation and sustainable exploitation of mediterranean ecosystems. Mediterranea: Serie de Estudios Biológicos, 2(20), 10–41.
Maciá-Vicente, J. G., Rosso, L. C., Ciancio, A., Jansson, H. B., & López-Llorca, L. V. (2009). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology, 155(3), 391–401. https://doi.org/10.1111/j.1744-7348.2009.00352.x
Montes de Oca, N., Arévalos, J., Nuñez, A., Riverón, Y., Villoch, A., & Hidalgo-Díaz, L. (2009). KlamiC®: Experiencia técnica-productiva. Revista de Protección Vegetal, 24(1), 62–65.
Nassimi, Z., & Taheri, P. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Science and Technology, 27(2), 252-267. https://doi.org/10.1080/09583157.2016.1277690
Rushda, S., & Ambreen, A. (2014). Combined effect of biofertilizers and fertilizer in the management of Meloidogyne incognita and also on the growth of red kidney bean (Phaseolus vulgaris). International Journal of Plant Pathology, 5(1), 1–11. https://doi.org/10.3923/ijpp.2014.1.11
Shah, S., Shrestha, R., Maharjan, S., Selosse, M. A., & Pant, B. (2019). Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants, 8(5), 1–11. https://doi:10.3390/plants8010005
Siddiqui, Z. A., & Akhtar, M. S. (2008). Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol Science and Technology, 18(3), 279–290. https://doi.org/10.1080/09583150801896043
Topalovi´c, O., Hussain, M., & Heuer, H. (2020). Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Frontiers of Microbiology, 11, Article 313. https://doi:10.3389/fmicb.2020.00313
Uddin, M., Saifullah, A. M., Khan, W., & Khan, B. (2019). Evaluation of Pochonia chlamydosporia (Goddard) isolates for suppression of Meloidogyne incognita, root-knot nematode of tomato. Journal of Agricultural Science, 11(5), 70–81. https://doi.org/10.5539/jas.v11n5p70
Vieira Dos Santos, M. C., Curtis, R. H., & Abrantes, I. (2014). The combined use of Pochonia chlamydosporia and plant defence activators-a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathologia Mediterranea, 53(1), 66–74.
Vyas, S., Nagori, R., & Purohit, S. D. (2008). Root colonization and growth enhancement of micropropagated Feronia limonia (L.) Swingle by Piriformospora indica-a cultivable root endophyte. International Journal of Plant Development of Biology, 2(2), 128–132.
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).