Use of remote sensing in agriculture: Applications in banana crop

Authors

DOI:

https://doi.org/10.15517/am.v33i3.48279

Keywords:

synthetic aperture radar, unmanned aerial vehicles, satellite images, vegetation index, radar

Abstract

Introduction. Remote sensors offer the ability to observe an object without being in contact with it. They are widely used in agricultural applications and have large development potential in banana (Musa AAA) plantations. During the past decades, the research in remote sensing and agriculture has increased through the availability of high-resolution satellite images (spatial, spectral, and temporal) and the use of remotely piloted vehicles that generate base information for research. Objective. To carry out a general review on the applications of the use of remote sensors for banana plantations in three specific aspects: determination of the cultivation area, productivity estimation, and disease diagnosis. Development. The extension of land covered by commercial banana plantations can be detected visually or easily by means of remote image classifications, such as the Synthetic Aperture Radar (SAR) sensor, which hve resulted in classification accuracies of around 95%. This is due to the high backscattering of the large leaves of the plant. However, the studies on productivity are scarce for banana cultivation and have been limited to the use of vegetation index, showing poor results in their correlations. As for the identification of diseases, work has been done on the main diseases affecting production with correlation levels above 90 % for some diseases. Conclusion. This review shows that banana plantations can be detected through the use of remote sensors and, likewise, these allow the identification of the main diseases in the crop. However, the results obtained to determine productivity are scarce and with little precision.

Downloads

Download data is not yet available.

References

Beaulieu, N., Leclerc, N., Velásquez, S., Pigeonnat, S., Gribius, N., Escalant, J. V., & Bonn, F. (1994). Investigations at CATIE on the potential of high-resolution radar images for monitoring of agriculture in Central America. Centro Agronómico Tropical de Investigación y Enseñanza. https://bit.ly/3Qbaw5t

Bendini, H. N., Jacon, A. D., Moreira Pessôa, A. C., Pompeu Pavenelli, J. A., Moraes, W. S., Ponzoni, F. J., & Fonseca, L. M. (2015). Caracterização espectral de folhas de bananeira (Musa spp.) para detecção e diferenciação da Sigatoka Negra e Sigatoka Amarela. In D. F. Marcolino Gherardi, & L. E. Oliveira e Cruz de Aragão (Eds.), Anais XVII Simpósio Brasileiro de Sensoriamento Remoto (pp. 2536–2543). Instituto Nacional de Pesquisas Espaciais. http://urlib.net/rep/8JMKD3MGP6W34M/3JM4A5H

Campos Calou, V. B., dos Santos Teixeira, A., Moreira, L. C. J., Souza Lima, C., de Oliveira, J. B., & Rabelo de Oliveira, M. R. (2020). The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering, 193, 115–125. https://doi.org/10.1016/j.biosystemseng.2020.02.016

Chemura, A. (2017). Modelling spatial variability of coffee (Coffea Arabica L.) crop condition with multispectral remote sensing data [Doctoral Dissertation, University of KwaZulu-Natal]. University of KwaZulu-Natal Repository. https://researchspace.ukzn.ac.za/xmlui/handle/10413/16233

Clark, A., & McKechnie, J. (2020). Detecting banana plantations in the wet tropics, Australia, using aerial photography and U-net. Applied Sciences, 10(6), Article 2017. https://doi.org/10.3390/app10062017

Clevers, J. G. P. W., & Kooistra, L. (2012). Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 574–583. https://doi.org/10.1109/JSTARS.2011.2176468

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

Corporación Bananera Nacional. (2019). Estadisticas de exportación bananera 2019. CORBANA S.A.

Corporación Bananera Nacional. (2021, 15 mayo). Banano de Costa Rica: Estadísticas. http://www.corbana.co.cr/banano-de-costa-rica/#estadistica

Fagan, M. E., DeFries, R. S., Sesnie, S. E., Arroyo-Mora, J. P., Soto, C., Singh, A., Townsend, P. A., & Chazdon, R. L. (2015). Mapping species composition of forests and tree plantations in northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery. Remote Sensing, 7(5), 5660–5696. https://doi.org/10.3390/rs70505660

Giovos, R., Tassopoulos, D., Kalivas, D., Lougkos, N., & Priovolou, A. (2021). Remote sensing vegetation indices in viticulture: A critical review. Agriculture, 11(5), Article 457. https://doi.org/10.3390/agriculture11050457

Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), Article L08403. https://doi.org/https://doi.org/10.1029/2005GL022688

Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Bonaventure Omondi, A., & Blomme, G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 110–124. https://doi.org/10.1016/j.isprsjprs.2020.08.025

Harto, A. B., Dwi Prastiwi, P. A., Ariadji, F. N., Suwardhi, D., Dwivany, F. M., Nuarsa, I. W., & Wikantika, K. (2019). Identification of banana plants from unmanned aerial vehicles (UAV) photos using object based image analysis (OBIA) method (a case study in Sayang Village, Jatinangor District, West Java). HAYATI Journal of Biosciences, 26(1), 7–14. https://doi.org/10.4308/hjb.26.1.7

Hassler, S. C., & Baysal-Gurel, F. (2019). Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy, 9(10), Article 618. https://doi.org/10.3390/agronomy9100618

Hatfield, J. L., Prueger, J. H., Sauer, T. J., Dold, C., O’Brien, P., & Wacha, K. (2019). Applications of vegetative indices from remote sensing to agriculture: Past and future. Inventions, 4(4), Article 71. https://doi.org/10.3390/inventions4040071

Israeli, Y., & Lahav, E. (2017). Banana. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of applied plant sciences (2nd ed., pp. 363–381). Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00072-1

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & Wang, J. (2018). A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 92, 141–152. https://doi.org/10.1016/j.eja.2017.11.002

Johansen, K., Phinn, S., Witte, C., Philip, S., & Newton, L. (2009). Mapping Banana Plantations from Object-oriented Classification of SPOT-5 Imagery. Photogrammetric Engineering & Remote Sensing, 75(9), 1069–1081. https://doi.org/10.14358/pers.75.9.1069

Johansen, K., Sohlbach, M., Sullivan, B., Stringer, S., Peasley, D., & Phinn, S. (2014). Mapping banana plants from high spatial resolution orthophotos to facilitate plant health assessment. Remote Sensing, 6(9), 8261–8286. https://doi.org/10.3390/rs6098261

Lamour, J., Naud, O., Lechaudel, M., Le Moguédec, G., Taylor, J., & Tisseyre, B. (2020). Spatial analysis and mapping of banana crop properties: issues of the asynchronicity of the banana production and proposition of a statistical method to take it into account. Precision Agriculture, 21(4), 897–921. https://doi.org/10.1007/s11119-019-09700-7

Leclerc, G., & Hall, C. A. S. (2000). Remote sensing and land use analysis for agriculture in Costa Rica. In G. L. Charles, A. S. Hall, & C. Leon-Perez (Eds.), Quantifying sustainable development (pp. 295–346). Academic Press. https://doi.org/10.1016/b978-012318860-1/50017-4

Machovina, B. L., Feeley, K. J., & Machovina, B. J. (2016). UAV remote sensing of spatial variation in banana production. Crop and Pasture Science, 67(12), 1281–1287. https://doi.org/10.1071/CP16135

Martínez-Solórzano, G. E., & Rey-Brina, J. C. (2021). Bananas (Musa AAA): Importancia, producción y comercio en tiempos de Covid-19. Agronomía Mesoamericana, 32(3), 1034–1046. https://doi.org/10.15517/am.v32i3.43610

McNairn, H., & Shang, J. (2016). A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In Y. Ban (Ed.), Multitemporal remote sensing. Methods and applications (pp. 317–340). Springer International. https://doi.org/10.1007/978-3-319-47037-5_15

Montero González, H. J. (2016). Simulación de la floración del cultivo de banano (Musa AAA cv. ’Grande Naine’) mediante el modelo “SIMBA-CR” adaptado a la vertiente Caribe de Costa Rica [Tesis de Licenciatura, no publicada]. Universidad de Costa Rica.

Morel, J., Jay, S., Féret, J.-B., Bakache, A., Bendoula, R., Carreel, F., & Gorretta, N. (2018). Exploring the potential of PROCOSINE and close-range hyperspectral imaging to study the effects of fungal diseases on leaf physiology. Scientific Reports, 8, Article 15933. https://doi.org/10.1038/s41598-018-34429-0

Neupane, B., Horanont, T., & Hung, N. D. (2019). Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE, 14(10), Article e0223906. https://doi.org/10.1371/journal.pone.0223906

Novero, A. U., Pasaporte, M. S., Aurelio Jr, R. M., Madanguit, C. J. G., Tinoy, M. R. M., Luayon, M. S., Oñez, J. P. L., Daquiado, E. G. B., Diez, J. M. A., Ordaneza, J. E., Riños, L. J., Capin, N. C., Pototan, B. L., Tan, H. G., Polinar, M. D. O., Nebres, D. I., & Nañola Jr, C. L. (2019). The use of light detection and ranging (LiDAR) technology and GIS in the assessment and mapping of bioresources in Davao Region, Mindanao Island, Philippines. Remote Sensing Applications: Society and Environment, 13, 1–11. https://doi.org/10.1016/j.rsase.2018.10.011

Nyombi, K. (2010). Understanding growth of East Africa highland banana: experiments and simulation [Doctoral Dissertation, Wageningen University]. Wageningen University Repository. https://edepot.wur.nl/132641

Organización de Naciones Unidas para la Alimentación y la Agricultura. (2020). Análisis del mercado del banano: resultados preliminares 2019. https://www.fao.org/3/ca7567es/CA7567ES.pdf

Pedroni, L. (2003). Improved classification of Landsat Thematic Mapper data using modified prior probabilities in large and complex landscapes. International Journal of Remote Sensing, 24(1), 91–113. https://doi.org/10.1080/01431160304998

Pena, J., Tan, Y., & Boonpook, W. (2019). Semantic segmentation based remote sensing data fusion on crops detection. Journal of Computer and Communications, 7(7), 53–64. https://doi.org/10.4236/jcc.2019.77006

Pérez-Vicente, L., Guzmán, M., Pasberg-Gauhl, C., Gauhl, F., & Jones, D. R. (2018). Fungal diseases of the foliage: Sigatoka leaf spot. In D. R. Jones (Ed.), Handbook of diseases of banana, abacá and enset (pp. 41–206). CABI.

Ploetz, R. C. (2018). Fungal diseases of the root, corm and pseudostem. In D. R. Jones (Ed.), Handbook of diseases of banana, abacá and enset (pp. 207–228). CABI. https://doi.org/10.1079/9781780647197.0207

Qi, Z., Yeh, A. G.-O., Li, X., & Lin, Z. (2012). A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 118, 21–39. https://doi.org/10.1016/J.RSE.2011.11.001

Rabatel, G., Lamour, J., Moura, D., & Naud, O. (2019). A multispectral processing chain for chlorophyll content assessment in banana fields by UAV imagery. In J. V. Stafford (Ed.), Precision agriculture ‘19 (pp. 413–419). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-888-9_51

Sinha, P., Robson, A., Schneider, D., Kilic, T., Mugera, H. K., Ilukor, J., & Tindamanyire, J. M. (2020). The potential of in-situ hyperspectral remote sensing for differentiating 12 banana genotypes grown in Uganda. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 85–103. https://doi.org/10.1016/j.isprsjprs.2020.06.023

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), Article 3136. https://doi.org/10.3390/rs12193136

Soto Ballestero, M. (2014). Bananos I: conceptos básicos (1ª ed.). Editorial Tecnológica de Costa Rica.

Steele-Dunne, S. C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu, P. -W., & Papathanassiou, K. (2017). Radar remote sensing of agricultural canopies: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2249–2273. https://doi.org/10.1109/JSTARS.2016.2639043

Stoorvogel, J. J., Verhoeven, R., van Leeuwen, H., & Orlich, R. (2001). AeroBanMan: the aerial detection of plant distribution and fungus infection for precision banana management. Lab of Soil Science and Geology WAU.

Tixier, P., Dorel, M., & Malézieux, E. (2007). A model-based Approach to maximise gross income by selection of banana planting date. Biosystems Engineering, 96(4), 471–476. https://doi.org/10.1016/j.biosystemseng.2007.01.003

Ugarte Fajardo, J., Bayona Andrade, O., Criollo Bonilla, R., Cevallos Cevallos, J., Mariduena-Zavala, M., Ochoa Donoso, D., & Vicente Villardón, J. L. (2020). Early detection of black Sigatoka in banana leaves using hyperspectral images. Applications in Plant Sciences, 8(8), Article e11383. https://doi.org/10.1002/aps3.11383

Usha, K., & Singh, B. (2013). Potential applications of remote sensing in horticulture—A review. Scientia Horticulturae, 153, 71–83. https://doi.org/10.1016/j.scienta.2013.01.008

Veldkamp, E., Huising, E. J., Stein, A., & Bouma, J. (1990). Variation of measured banana yields in a Costa Rican plantation as explained by soil survey and thematic mapper data. Geoderma, 47(3–4), 337–348. https://doi.org/10.1016/0016-7061(90)90037-A

Verhoeye, J., & De Wulf, R. (1999). An image processing chain for land-cover classification using multitemporal ERS-1 data. Photogrammetric Engineering and Remote Sensing, 65(10), 1179–1186.

Wang, X., Wang, Q., Ling, F., Zhu, X., & Jiang, H. (2009). Principal component analysis and its application on banana fields mapping using ENVISAT ASAR data in Zhangzhou, Fujian Province. Geo-Spatial Information Science, 12(2), 142–145. https://doi.org/10.1007/s11806-009-0035-1

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, Article 111402. https://doi.org/10.1016/j.rse.2019.111402

Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science, 11(1), 31–50.

Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., & Jin, Y. (2020a). Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. International Journal of Agricultural and Biological Engineering, 13(3), 136–142. https://doi.org/10.25165/j.ijabe.20201303.5524

Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., & Jin, Y. (2020b). Recognition of banana Fusarium wilt based on UAV remote sensing. Remote Sensing, 12(6), Article 938. https://doi.org/10.3390/rs12060938

Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L., & Feng, M. (2019). Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sensing, 11(22), Article 2673. https://doi.org/10.3390/rs11222673

Published

2022-08-22

How to Cite

Guzman-Alvarez, J. A., González-Zuñiga, M., Sandoval Fernandez, J. A., & Calvo-Alvarado, J. C. (2022). Use of remote sensing in agriculture: Applications in banana crop. Agronomía Mesoamericana, 33(3), 48279. https://doi.org/10.15517/am.v33i3.48279