High-resolution melting curve analysis to identify sex in papaya (Carica papaya L.)





melting temperature, single polymorphism nucleotide, high-resolution melting, plant breeding


Introduction. The sexing of papaya plants (Carica papaya L.) in commercial plantations is usually done visually once the plant emits the flower. There are also biotechnological procedures such as the Polymerase Chain Reaction (PCR), used to detect the sex of papaya at early ages, however, both methods mentioned above present a series of drawbacks, among them false positives. Objective. To identify sex in papaya seedlings using SNP (Single Nucleotide Polymorphism) markers with a high precision. Materials and Methods. The research was carried out at the Fabio Baudrit Moreno Agricultural Experiment Station of the Universidad de Costa Rica, during the months of February to October, 2020. Eight SNP markers were evaluated in papaya plants of known sex using the HRMA (acronym in English: High Resolution Melting Analysis) technique, the best one was chosen and reevaluated in two populations of the genetic improvement program of this crop, then the sexed plants were sown in the field to compare the molecular sexing with the current field sexing. Results. Several of the SNP markers evaluated were polymorphic and could be used to identify sex in papaya, however, the marker CpSERK_HRM_34704 was the one that most closely matched the selection criteria. Conclusion. In the case of the papaya hybrid Pococi and related breeding populations, the marker CpSERK_HRM_34704 showed 100 % precision between the molecular sexing of the seedlings in the nursery using the HRM technique and the current sex of the same plants planted in the field.


Download data is not yet available.


Anandan, R., Thirugnanakumar, S., Sudhakar, D., & Balasubramanian, P. (2011). In vitro organogenesis and plantlet regeneration of (Carica papaya L.). Journal of Agricultural Technology, 7(5), 1339–1348.

Araya, E., Bogantes, A., Holst, A., Vargas, C., Gómez L., Brenes, A., Sánchez E., Chavarría, M., & Barboza, L. (2019). Field performance of hermaphrodite papaya plants obtained through molecular selection and micropropagation. Crop Breeding and Applied Biotechnology, 19(4), 420–427. https://doi.org/10.1590/1984-70332019v19n4a59

Barrantes, W., Loría, C., & Gómez, L. (2019). Evaluación de dos sistemas de sexado en plantas de papaya (Carica papaya) híbrido Pococí. Agronomía Mesoamericana, 30(2), 437–446. https://doi.org/10.15517/am.v30i2.34916

Bekheet, S. A., Solliman, M. E., & Taha, H. S. (2007). In vitro differentiation of zygotic lines of date palm: Biochemical and molecular approaches to sex determination. Acta Horticulturae, 736, 117–126. https://doi.org/10.17660/ActaHortic.2007.736.10

Bhargava, A., & Srivastava, S. (2019). Plant breeding. In A. Bhaegava, & S. Srivastava (Eds.), Participatory plant breeding: Concept and applications (1st Ed., pp. 29–68). Springer. https://doi.org/10.1007/978-981-13-7119-6_2

Bogantes, A., Mora, E., Umaña, G., & Loría, C. (2011). Guía para la producción de la papaya en Costa Rica. Ministerio de Agricultura y Ganadería.

Chaves-Bedoya, G., & Nuñez, V. (2007). A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica, 153(1), 215–220. https://doi.org/10.1007/s10681-006-9256-7

Chaves-Bedoya, G., Pulido, M., Sánchez-Betancourt, E., & Núñez, V. (2009). RAPD markers for sex identification in papaya (Carica papaya L.) in Colombia. Agronomía Colombiana, 27(2), 145–149.

Chen, J. R., Urasaki, N., Matsumura, H., Chen, I. C., Lee, M. J., Chang, H. J., Chung, W. C., & Ku, H. M. (2019). Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.). Molecular Breeding, 39, article 14. https://doi.org/10.1007/s11032-018-0918-7

Da Silva, J. A. T., Rashid, Z., Nhut, D. T. Sivakumar, D., Gera, A., Souza Jr, M. T., & Tennant, P. F. (2007). Papaya (Carica papaya L.) biology and biotechnology. Tree and Forestry Science and Biotechnology, 1(1), 47–73.

Deputy, J., Ming, R., Ma, H., Liu, Z., Fitch, M., Wang, M., Manshardt, R., & Stiles, J. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). Theoretical and Applied Genetics, 106, 107–111. https://doi.org/10.1007/s00122-002-0995-0

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

Fitzcharles, E. M. (2012). Rapid discrimination between four Antarctic fish species, genus Macrourus, using HRM analysis. Fisheries Research, 127, 166-170. https://doi.org/10.1016/j.fishres.2012.02.002

Google. (s.f.). Estación Experimental Agrícola Fabio Baudrit Moreno. Recuperado el 28 de diciembre del 2021 de https://goo.gl/maps/Cyi3stkrEbRmcLou7

Han, Y., Khu, D. M., & Monteros, M. J. (2012). High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Molecular Breeding, 29(2), 489–501. https://doi.org/10.1007/s11032-011-9566-x

Kafkas, S., Khodaeiaminjan, M., Güney M., & Kafkas, E. (2015). Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics, 16, article 98. http://doi.org/10.1186/s12864-015-1326-6

Lee, C. Y., Lin, H. J., Viswanath, K. K., Lin, C. P., Chang, B. C. H., Chiu, P. H., Chiu, C. T., Wang, R. H., Chin, S. W., & Chen, F. C. (2018). The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L. PLoS ONE, 13(3), Article e0194605. https://doi.org/10.1371/journal.pone.0194605

Liu, K., Yuan, C., Li, H., Lin, W., Yang, Y., Shen, C., & Zheng, X. (2015). Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC genomics, 16, Article 901. https://doi.org/10.1186/s12864-015-2182-0

Ming, R., Feng, Y., Yu, Q., Dionne, L. A., Saw, J. H., Senin, P., Salzberg, S. L., Wang, B. V., Lewis, K. L. T., Feng, L., Jones M. R., & Skelton R. L. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452, 991–996. https://doi.org/10.1038/nature06856

Mora, E., & Bogantes, A. (2005). Estudio de una mutación en papaya (Carica papaya L.) que produce letalidad de plantas femeninas. Agronomía Mesoamericana, 16(1), 89–94. https://doi.org/10.15517/am.v16i1.5185

Saalau, E., Barrantes, W., Loría, C., Brenes, A., & Gómez, L. (2009). Identificación mediante PCR del sexo de la papaya (Carica papaya L.), híbrido “Pococí”. Agronomía Mesoamericana, 20(2), 311–317. https://doi.org/10.15517/am.v20i2.4947

Simko, I. (2016). High-resolution DNA melting analysis in plant research. Trends in Plant Science, 21(6), 528–537. https://doi.org/10.1016/j.tplants.2016.01.004

Urasaki, N., Tokumoto, M., Tarora, K., Ban, Y., Kayano, T., Tanaka, H., Oku, H., Chinen, I., & Terauchi, R. (2002). A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theoretical and applied genetics, 104(2), 281–285. https://doi.org/10.1007/s001220100693

Urasaki, N., Tarora, K., Shudo, A., Ueno, H., Tamaki, M., Miyagi, N., Adaniya, S., & Matsumura, H. (2012). Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS ONE, 7(7), Article e40904. https://doi.org/10.1371/journal.pone.0040904



How to Cite

Barrantes-Santamaría, W., & Sánchez-Barrantes, E. M. (2022). High-resolution melting curve analysis to identify sex in papaya (Carica papaya L.). Agronomía Mesoamericana, 33(3), 48750. https://doi.org/10.15517/am.v33i3.48750