Carbon stock in silvopastoral systems: A study in the Middle Sinú, Colombia

Authors

DOI:

https://doi.org/10.15517/am.v34i1.49138

Keywords:

above-ground biomass, below-ground biomass, carbon sequestration, greenhouse gases, livestock production

Abstract

Introduction. Silvopastoral systems play an important role in livestock production, provide benefits to the animal and edaphic components, and offer environmental services such as atmospheric carbon sequestration in the soil and biomass. Objective. To evaluate the capacity of atmospheric carbon sequestration in three systems of different complexities focused on livestock production, in northern Colombia. Materials and methods. The study was carried out at the Turipana Research Center of the Corporacion Colombiana de Investigacion Agropecuaria between 2019 and 2021. The dasometric parameters of the tree/shrub component were evaluated. The aboveground (CBA) and belowground (CBR) biomass of these species were estimated with allometric models. The fallen litter biomass (CLIT) and soil organic carbon up to 30 cm, with readings every 10 cm, were quantified by the combustion method and total accumulated carbon. The design corresponded to complete randomized blocks, with three treatments and four repetitions. The treatments corresponded to two silvopastoral systems (SSP) of different complexity and a grass without trees (Pr). Results. Aerial biomass was higher in the SSP (2.18 ± 1.13, 4.51 ± 3.76 t ha-1 C) than in Pr (0.19 ± 0.09 t ha-1 C). The highest accumulation of CBR (1.16 ± 3.76 t ha-1 C) and CLIT (3.09 ± 2.45 t ha-1 C) occurred in SSP2. The soil organic carbon accumulated (COS) values showed higher accumulation in the first stratum. The COS represented in the three systems more than 70 % of the total contribution in accumulated carbon contribution. Conclusion. Under the environmental conditions of the humid tropical dry forest, silvopastoral systems increased the stock of atmospheric carbon in the soil and biomass. The use of SSP is a strategy in the mitigation of greenhouse gases in the livestock production system.

Downloads

Download data is not yet available.

References

Aldana Moreno, J. A. (2008). Selección fenotípica de árboles de melina (Gmelina arborea L. Roxb) en el Centro Universitario Regional del Norte (CURDN) municipio de Armero Guayabal (Tolima) [Tesis de Grado, Universidad del Tolima]. Repositorio de la Universidad del Tolima. http://repository.ut.edu.co/handle/001/3103

Álvarez, E., Benítez, D., Velásquez, C., & Cogollo, A. (2013). Densidad básica del fuste de árboles del bosque seco en la costa Caribe de Colombia. Intropica: Revista del Instituto de Investigaciones Tropicales, 8(1), 17–28.

Amézquita, M. C., Murgueitio, E., Ibrahim, M., & Ramírez, B. (2010). Carbon sequestration in pasture and silvopastoral systems compared with native forests in ecosystems of tropical America. In M. Abberton, R. Conant, & C. Batello (Eds.), Grassland carbon sequestration: management, policy and economics. Proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change (Vol. 11, pp. 153–161). Food and Agriculture Organization of the United Nations.

Anguiano, J. M., Aguirre, J., & Palma, J. M. (2013). Secuestro de carbono en la biomasa aérea de un sistema agrosilvopastoril de Cocos nucifera, Leucaena leucocephala Var. Cunningham y Pennisetum purpureum Cuba CT-115. Avances en Investigación Agropecuaria, 17(1), 149–160.

Barreto Rodríguez, C. R. (2017). Rendimiento académico en la asignatura de estadística de la Escuela de Ingeniería Civil, 2015, Uladech católica. In Crescendo, 8(1), 42–56. https://doi.org/10.21895/incres.2017.v8n1.05

Brown, S., Gillespie, A. J., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881–902. https://bit.ly/3g2gyIn

Burt, R., & Soil Survey Staff (Eds.). (2014). Soil survey field and laboratory methods manual (Soil Survey Investigations Report No. 51, Version 2). US Department of Agriculture. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1244466.pdf

Cai, H., Li, F., & Jin, G. (2019). Fine root biomass, production and turnover rates in plantations versus natural forests: effects of stand characteristics and soil properties. Plant and Soil, 436, 463–474. https://doi.org/10.1007/s11104-019-03948-8

Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1–11. https://doi.org/10.1007/s004420050201

Chave, J., Réjou Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez Yrizar, A., Mugasha, W. A., Muller Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz Malavassi, …Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

Contreras-Santos, J. L., Martínez-Atencia, J., & Falla-Guzman, C. K. (2021). Carbono acumulado en raíces de especies vegetales en sistemas silvopastoriles en el Norte de Colombia. Revista de Ciencias Ambientales, 55(1), 52–69. https://doi.org/10.15359/rca.55-1.3

Contreras-Santos, J. L., Martínez-Atencia, J., Raghavan, B., López-Rebolledo, L., & Garrido-Pineda, J. (2021). Sistemas silvopastoriles: mitigación de gases de efecto invernadero, bosque seco tropical - Colombia. Agronomía Mesoamericana, 32(2) 901–919. https://doi.org/10.15517/am.v32i3.43313

Contreras-Santos, J. L., Martínez-Atencia, J., Cadena-Torres, J., & Falla-Guzmán, C. K. (2019). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. Agronomía Costarricense, 44(1), 29–41. https://doi.org/10.15517/rac.v44i1.39999

De Stefano, A., & Jacobson, M. G. (2017). Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems, 92, 285–299 https://doi.org/10.1007/s10457-017-0147-9

Díaz Lezcano, M. I., Leguizamón, L., Gamarra Lezcano, C. C., Vera de Ortíz, M., & Galeano Samaniego, M. P. (2019). Estimación del contenido de carbono en sistemas silvopastoriles de Prosopis spp en el chaco central paraguayo. Quebracho - Revista de Ciencias Forestales, 27(1,2), 54–65.

Dollinger, J., & Jose, S. (2018). Agroforestry for soil health. Agroforestry Systems, 92, 213–219. https://doi.org/10.1007/s10457-018-0223-9

Dollinger, J., & Jose, S. (2019). Correction to: Agroforestry for soil health. Agroforestry Systems, 93(3), 1205. https://doi.org/10.1007/s10457-018-0227-5

Escudero Guarín, A. A. (2019). Estimación de los contenidos de biomasa del bosque urbano del Tecnológico de Antioquia - Institución Universitaria [Tesis de grado, Tecnológico de Antioquia]. DSpace. https://dspace.tdea.edu.co/handle/tda/472

Esquivel, H., Ibrahim, M., Harvey, C., Villanueva, C., Benjamin, T., & Sinclair, F. L. (2003). Árboles dispersos en potreros de fincas ganaderas en un ecosistema seco de Costa Rica. Agroforestería en las Américas, 10(39–40), 24–29. https://repositorio.catie.ac.cr/handle/11554/5793

Food and Agriculture Organization of the United Nations. (2017). Soil organic sarbon the hidden potential. https://www.fao.org/3/i6937e/i6937e.pdf

Holdridge, L. R. (2000). Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura.

Idárraga Piedrahíta, A., Ortiz, R. D. C., Callejas Posada, R., & Merello, M. (Eds.). (2013). Flora de Antioquia. Catálogo de las Plantas Vasculares. Volumen II. Listado de las plantas vasculares del Departamento de Antioquia. Oficina de Planeación Departamental de la Gobernación de Antioquia. https://bit.ly/3VplneV

Ige, P. O. (2018). Above ground biomass and carbon stock estimation of Gmelina arborea (Roxb.) stands in Omo Forest Reserve, Nigeria. Journal of Research in Forestry, Wildlife and Environment, 10(4), 71–80. https://www.ajol.info/index.php/jrfwe/article/view/182016

Jackson, R. B., Mooney, H. A., & Schulze, E. -D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94(14), 7362–7366. https://doi.org/10.1073/pnas.94.14.7362

Jiménez Ruiz, E. R., Fonseca González, W., & Pazmiño Pesantez, L. (2019). Sistemas Silvopastoriles y Cambio climático: Estimación y predicción de Biomasa Arbórea. La Granja, 29(1), 44–55. https://doi.org/10.17163/lgr.n29.2019.04

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76, 1–10. https://doi.org/10.1007/s10457-009-9229-7

Lok, S., Fraga, S., Noda, A., & García, M. (2013). Almacenamiento de carbono en el suelo de tres sistemas ganaderos tropicales en explotación con ganado vacuno. Revista Cubana de Ciencia Agrícola, 47(1), 75–82. http://cjascience.com/index.php/RCCA/article/view/276

López-Santiago, J. G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V. F., Solorio-Sánchez, F. J., Martínez-Zurimendi, P., Aryal, D. R., & Chay-Canul, A. J. (2019). Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Systems, 93, 199–211. https://doi.org/10.1007/s10457-018-0259-x

Martínez, J., Cajas, Y. S., León, J. D., & Osorio, N. W. (2014). Silvopastoral systems enhance soil quality in grasslands of Colombia. Applied and Environmental Soil Science, 2014, Article 359736. https://doi.org/10.1155/2014/359736

Mattsson, E., Ostwald, M., Nissanka, S. P., & Pushpakumara, D. K. N. G. (2014). Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agroforestry Systems, 89, 435–445. https://doi.org/10.1007/s10457-014-9780-8

McGroddy, M. E., Lerner, A. M., Burbano, D. V., Schneider, L. C., & Rudel, T. K. (2015). Carbon stocks in silvopastoral systems: A study from four communities in Southeastern Ecuador. Biotropica, 47(4), 407–415. https://doi.org/10.1111/btp.12225

Morales Ruiz, D. E., Aryal, D. R., Pinto Ruiz, R., Guevara Hernández, F., Casanova Lugo, F., & Villanueva López, G. (2020). Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation & Development, 32(2), 738–756. https://doi.org/10.1002/ldr.3761

Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., & Eibl, B. (2015). Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales (Serie técnica, Informe técnico No. 402). Centro Agronómico Tropical de Investigación y Enseñanza. https://bit.ly/38My0xk

Nair, P. K. R. (2012). Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry Systems, 86(2), 243–253. https://doi.org/10.1007/s10457-011-9434-z

Nakakaawa, C., Aune, J., & Vedeld, P. (2009). Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: what role for carbon sequestration payments? New Forests, 40, 19–44. https://doi.org/10.1007/s11056-009-9180-5

Oliva, M., Culqui Mirano, L., Leiva, S., Collazos, R., Salas, R., Vásquez, H., & Maicelo Quintana, J. L. (2017). Reserve of carbon in a silvopastoral system composed of Pinus patula and native herbaceous. Scientia Agropecuaria, 8(2), 149–157. https://doi.org/10.17268/sci.agropecu.2017.02.07

Pachauri, R. K., & Meyer, L. A. (Eds.) (2014). Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de Trabajo I, II y III al Quinto Informe de evaluación del panel intergubernamental sobre el cambio climático. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf

Pennock, D., & McKenzie, N. (2015). Estado mundial del recurso suelo (Resumen Técnico). Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/3/a-i5126s.pdf

Quiceno Urbina, N. J., Tangarife Marín, G. M., & Álvarez León, R. (2016). Estimación del contenido de biomasa, fijación de carbono y servicios ambientales, en un área de bosque primario en el resguardo indígena Piapoco Chigüiro-chátare de Barrancominas, departamento del Guainía (Colombia). Revista Luna Azul, 43, 171–202. https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/3628

Rodríguez Hurtado, A. (2018). Estimación del crecimiento, la biomasa y la captura de carbono de tres especies arbóreas del bosque urbano en los municipios de Medellín y Envigado [Tesis de grado, Universidad Escuela de Ingeniería de Antioquia]. Repositorio de la Universidad Escuela de Ingeniería de Antioquia. https://repository.eia.edu.co/handle/11190/1957

Rojas, J., Ibrahim, M., & Andrade, H. (2009). Secuestro de carbono y uso de agua en sistemas silvopastoriles con especies maderables nativas en el trópico seco de Costa Rica. Ciencia & Tecnología Agropecuaria, 10(2), 214–223. https://revistacta.agrosavia.co/index.php/revista/article/view/144

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). USDA Natural Resources Conservation Service.

Sotelo, M., Suárez Salazar, J. C., Álvarez, F., Castro Núñez, A., Calderón Soto, V. H., Arango, J. (2017). Sistemas sostenibles de producción ganadera en el contexto amazónico — Sistemas silvopastoriles: ¿una opción viable? (Publicación CIAT No. 448). Centro Internacional de Agricultura Tropical. https://hdl.handle.net/10568/89088

Soto-Pinto, L., Anzueto, M., Mendoza, J., Jimenez Ferrer, G., & de Jong, B. (2010). Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78, Article 39. https://doi.org/10.1007/s10457-009-9247-5

Schmitt-Harsh, M., Evans, T. P., Castellanos, E., & Randolph, J. C. (2012). Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agroforestry Systems, 86, 141–157. https://doi.org/10.1007/s10457-012-9549-x

Torres-Rivera, J. A., Espinoza-Domínguez, W., Reddiar-Krishnamurty, L., & Vázquez-Alarcón, A. (2011). Secuestro de carbono en potreros arbolados, potreros sin árboles y bosque caducifolio de Huatusco, Veracruz. Tropical and Subtropical Agroecosystems, 13(3), 543–549. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1340

Varón, T., & León Morales, S. (2013). Arboretum y Palmetum: Guía de identificación. Universidad Nacional de Colombia.

Vásquez, H. V., Valqui, L., Bobadilla, L. G., Arbizu, C. I., Alegre, J. C., & Maicelo, J. L. (2021). Influence of arboreal components on the physical-chemical characteristics of the soil under four silvopastoral systems in northeastern Peru. Heliyon, 7(8), Article e07725. http://doi.org/10.1016/j.heliyon.2021.e07725

Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://doi.org/10.1097/00010694-193401000-00003

Published

2022-10-21

How to Cite

Contreras-Santos, J. L., Falla-Guzmán, C. K., Rodríguez, J. L., Fernando-Garrido, J., Martínez-Atencia, J., & Aguayo-Ulloa, L. (2022). Carbon stock in silvopastoral systems: A study in the Middle Sinú, Colombia. Agronomía Mesoamericana, 34(1), 49138. https://doi.org/10.15517/am.v34i1.49138

Most read articles by the same author(s)