Identification of soluble proteins present in giant squid (Dosidicus gigas) meal for human consumption
DOI:
https://doi.org/10.15517/am.v34i2.50264Keywords:
non-protein nitrogen, alkaline extraction, fortified foods, sarcoplasmatic proteinAbstract
Introduction. The giant squid (Dosidicus gigas) is a species of great abundance and considered as potential resource to meet the demand for protein in Peru. Giant squid meal represents an alternative to traditional proteins which can be used in food fortification. Objective. To optimize the extraction process and identification of soluble protein from giant squid meal (GSM). Materials and methods. This study was conducted at the Universidad Nacional Agraria La Molina, Lima, Peru, between 2018 and 2019. To obtain the highest yield of soluble protein (Ŷ) extracted, an alkaline extraction method using NaOH followed by acid precipitation at pH 4.5 was applied. Surface response methodology was used to determine the optimal parameters for protein extraction such as temperature, concentration of NaCl, time, and the ratio GSM: solvent. A 1D and 2D electrophoresis study was carried out to find the distribution of molecular weights and to identify the main proteins of GSM. Results. Values for optimal response were the concentration of NaCl 0 M, an extraction time of 35 min, the ratio GSM: solvent of 1:31.72, and a temperature at 71.9 ºC. The molecular weights of the proteins detected were in the range of 6.5 and 38.37 kDa, which would correspond to tropomyosins, troponins, and myosin light chain residues. Conclusions. This study allowed to optimize the extraction parameters and to identify soluble proteins corresponding to the sarcoplasmic fraction of the giant squid meal (GSM), which could be used in the food industry.
Downloads
References
Alais, C., Linden, G., & Miclo, L. (2020). Biochimie alimentaire (6th ed.). DUNOD.
Association of Official Analytical Chemists. (2016). Official methods of analysis of AOAC International (20th ed.). AOAC International.
Aquino Méndez, E. M. (2016). Optimización del proceso de extracción de las proteínas de la torta de sacha inchi (Plukenetia volubilis L.) [Tesis de maestría, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://bit.ly/3i9NgsW
Ayala, J., & Pardo, R. (1995). Optimización por diseños experimentales: con aplicaciones en ingeniería. Editorial A&B.
Azagoh, C., Ducept, R., Garcia, R., Rakotozafy, L., Cuvelier, M. -E, Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24–31. https://doi.org/10.1016/j.foodres.2016.06.010
Blum, H., Beier, H., & Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8(2), 93–99. https://doi.org/10.1002/elps.1150080203
Calvo, M. C., Carranco, M. E., Salinas, C. A., & Carrillo, S. (2016). Composición química de harina de calamar gigante Dosidicus gigas. Archivos Latinoamericanos de Nutrición, 66(1), 74–81. https://www.alanrevista.org/ediciones/2016/1/art-9/
Cortés-Ruiz, J. A., Pacheco-Aguilar, R., Lugo-Sánchez, M., Carvallo-Ruiz, M. G., & García-Sánchez, G. (2008). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation. Food Chemistry, 110(2), 486–492. https://doi.org/10.1016/j.foodchem.2008.02.030
Csirke, J., Argüelles, J., Alegre, A., Ayón, P., Bouchon, M., Castillo, G., Castillo, R., Cisneros, R., Guevara-Carrasco, R., Lau, L., Mariátegui, L., Salazar, C., Tafur, R., Torrejón, E., & Yamashiro, C. (2018). Biología, estructura poblacional y pesquería de pota o calamar gigante (Dosidicus gigas) en el Perú. Boletín Instituto del Mar del Perú, 33(2), 302–364. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/46
De La Fuente-Betancourt, G., García-Carreño, F., Navarrete del Toro, M. Á., Pacheco-Aguilar, R., & Córdova-Murueta J. H. (2008). Effect of storage at 0 °C on mantle proteins and functional properties of jumbo squid. International Journal of Food Science and Technology, 43(7), 1263–1270. https://doi.org/10.1111/j.1365-2621.2007.01602.x
Deleu, L. J., Lambrecht, M. A., Van de Vondel, J., & Delcour, J. A. (2019). The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 25, 98–103. https://doi.org/10.1016/j.cofs.2019.02.017
Dihort-Garcia, G., Ocano-Higuera, V. M., Ezquerra-Brauer, J. M., Lugo-Sanchez, M. E., Pacheco-Aguilar, R., Barrales-Heredia, S. M., & Marquez-Rios, E. (2011). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) obtained by alkaline dissolution. CyTA - Journal of Food, 9(3), 171–179. https://doi.org/10.1080/19476337.2010.503905
Dublán García, O. (2001). Evaluación de la actividad proteolítica del manto de calamar gigante (Dosidicus gigas) [Tesis doctoral, Universidad Autónoma Metropolitana]. Library. https://bit.ly/3QiLUsf
Elizondo-Garza, P., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Protein recovery from skipjack tuna (Katsuwonus pelamis) wash water with different pH and temperature combinations. Revista Mexicana de Ingeniería Química, 16(1), 91–99. https://doi.org/10.24275/rmiq/Alim739
Espinoza, K, Roldán, D., & Martínez, N. (2021). Elaboración de Snack extruido a partir de cereales y concentrado de proteína de pota (Dosidicus gigas) y determinación de su vida útil. Anales Científico, 82(1), 180–191. http://doi.org/10.21704/ac.v82i1.1755
Fritz, M., Vecchi, B., Rinaldi, G., & Añón, M. C. (2011). Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chemistry, 126(3), 878–884. https://doi.org/10.1016/j.foodchem.2010.11.065
Galindo, J., Elías, A., Muñoz, E., Marrero, Y., González, N., & Sosa, A. (2017). Activadores ruminales, aspectos generales y sus ventajas en la alimentación de animales rumiantes. Cuban Journal of Agricultural Science, 51(1), 11–23. https://www.cjascience.com/index.php/CJAS/article/view/680
Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish byproducts and low-value fish: A review. Food Chemistry, 124(2), 422–431. https://doi.org/10.1016/j.foodchem.2010.06.078
Gutiérrez, H., & De la Vara, R. (2008). Análisis y diseño de experimentos (2nd ed.). McGraw Hill/Interamericana.
Hashimoto, K., Watabe, S., Kono, M., & Shiro, K. (1979). Muscle protein composition of sardine and mackerel. Bulletin of the Japanese Society of Scientific Fisheries, 45(11), 1435–1441. https://doi.org/10.2331/suisan.45.1435
Hou, F., Ding, W., Qu, W., Olayemi Oladejo, A., Xiong, F., Zhang, W., He, R., & Ma, H. (2017). Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chemistry, 218, 207–215. https://doi.org/10.1016/j.foodchem.2016.09.064
Jangchud, A., & Chinnan, M. S. (1999). Properties of peanut protein film: Sorption isotherm and plasticizer effect. LWT - Food Science and Technology, 32(2), 89–94. https://doi.org/10.1006/fstl.1998.0498
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage. Nature, 227, 680–685. https://doi.org/10.1038/227680A0
Lopez-Enriquez, R. L., Ocano-Higuera, V. M., Torres-Arreola, W., Ezquerra-Brauer J. M., & Marquez-Rios, E. (2015). Chemical and functional characterization of sarcoplasmic proteins from giant squid (Dosidicus gigas) mantle. Journal of Chemistry, 2015, Article 538721. https://doi.org/10.1155/2015/538721
Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Luna, A. (2015, diciembre 13). La pota, alimento nutritivo, a bajo costo y mucha proteína. Diario Correo. Recuperado en junio 15, 2021, de: https://bit.ly/3VHmHcc
Ma, T., Wang, Q., & Wu, H. (2010). Optimization of extraction conditions for improving solubility of peanut protein concentrates by response surface methodology. LWT - Food Science and Technology, 43(9), 1450–1455. https://doi.org/10.1016/j.lwt.2010.03.015
Maza, S., & Rosales, M. (2004). Procesamiento de surimi de pota Dosidicus gigas por solubilización ácida-alcalina y precipitación isoeléctrica. Instituto Tecnológico de la Producción. https://repositorio.itp.gob.pe/handle/ITP/82
Maza, S., Rosales, M., & Castro, R. (2003). Efecto de un proceso de lixiviación ácida salina sobre la calidad del surimi de Dosidicus gigas “pota”. Instituto Tecnológico de la Producción. http://repositorio.itp.gob.pe/handle/ITP/103
Mignino, L. A:, & Paredi, M. E. (2006). Physico-chemical and functional properties of myofibrillar proteins from different species of molluscs. LWT – Food Science and Technology, 39(1), 35–42. https://doi.org/10.1016/j.lwt.2004.12.004
Momen, S., Alavi, F., & Aider, M. (2021). Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science & Technology, 110, 778–797. https://doi.org/10.1016/j.tifs.2021.02.052
Murphy, R. Y., & Marks, B. P. (2000). Effect of meat temperature on proteins, texture, and cook loss for ground chicken breast patties. Poultry Science, 79(1), 99–104. https://doi.org/10.1093/ps/79.1.99
Oomah, B. D., Mazza, G., & Cui, W. (1994). Optimization of protein extraction from flaxseed meal. Food Research International, 27(4), 355–361. https://doi.org/10.1016/0963-9969(94)90191-0
Pedreschi, F. (1993). Determinación de la composición proteica del músculo del manto de pota (Dosidicus gigas) [Tesis de Grado, no publicada]. Universidad Nacional Agraria La Molina.
Pedreschi Plasencia, R. P. (2009). A proteomics approach to study core breakdown disorder in stored ‘Conference’ pears [Doctoral thesis, Katholieke Universiteit Leuven]. Katholieke Universiteit Leuven Repository. https://lirias.kuleuven.be/retrieve/69378
Rivas, N., Dench, J. E., & Caygill, J. C. (1981). Nitrogen extractability of sesame (Sesame indicum L.) seed and the preparation of two proteins isolate. Journal Science Food Agriculture, 32, 565–571. https://doi.org/10.1002/jsfa.2740320607
Roldán Acero, D. (2007). Industrialización de harina de pota (Dosidicus gigas). Revista de la Sociedad Química del Perú, 73(2), 120–121.
Roldán-Acero, D. J., Omote Sibina, J. R., Osorio-Lescano, C. M., & Molleda-Ordoñez, A. A. (2021). Desarrollo de un producto extruido a base de cereales y concentrado de proteína de calamar gigante (Dosidicus gigas). Intropica, 16(1), 34–42. https://doi.org/10.21676/23897864.3777
Rojas Hurtado, D. P. (2009). Evaluación de la toxicidad a dosis repetidas (90 días) por vía oral del concentrado de proteína de pota (Dosidicus gigas), en ratas Sprague dawley [Tesis de Maestría, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://bit.ly/3Gmx2o2
Rovegno, N. (2021, julio 15). Pota. Wikipesca Perú. Recuperado en septiembre 23, 2021, de https://www.mardelperu.pe/pesca/13/pesqueria-pota
Shahidi, F., & Venugopal, V. (1994). Solubilization and thermostability of water dispersions of muscle structural proteins of atlantic herring (Clupea harengus). Journal of Agricultural and Food Chemistry, 42(7), 1440–1446. https://doi.org/10.1021/jf00043a010
Solari-Godiño, A., Córdova-Ramos, J. S., Pilco-Quesada, S., Cerrón-Mallqui, L. M., Albrecht-Ruiz, M., & Sánchez Hernández, J. (2017). Proximal composition and functional properties of lyophilizated surimi of Dosidicus gigas “jumbo squid “. Scientia Agropecuaria, 8(1), 57–62. https://doi.org/10.17268/sci.agropecu.2017.01.05
Reddy Surasani, V. K., Kumar Khatkar, S., & Singh, S. (2017). Effect of process variables on solubility and recovery yields of proteins from pangas (Pangasius pangasius) frames obtained by alkaline solubilization method: Characteristics of isolates. Food and Bioproducts Processing, 106, 137–146. https://doi.org/10.1016/j.fbp.2017.09.008
Zhang, R., Zhou, R., Pan, W., Lin, W., Zhang, X., Li, M., Li, J. Niu, F., & Li, A. (2017). Salting-in effect on muscle protein extracted from giant squid (Dosidicus gigas). Food Chemistry, 215, 256–262. https://doi.org/10.1016/j.foodchem.2016.07.177
Zhao, C. -C., Benjakul, S., & Eun, J. -B. (2019). Changes in protein compositions and textural properties of the muscle of skate fermented at 10 °C. International Journal of Food Properties, 22(1), 173–185. https://doi.org/10.1080/10942912.2019.1575396
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Juan Rodolfo Omote-Sibina, David Julián Roldán-Acero
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).