Identificación de proteínas solubles presentes en la harina de calamar gigante (Dosidicus gigas) para consumo humano

Autores/as

DOI:

https://doi.org/10.15517/am.v34i2.50264

Palabras clave:

nitrógeno no proteico, extracción alcalina, alimentos fortificados, proteína sarcoplasmática

Resumen

Introducción. El calamar gigante (Dosidicus gigas) es una especie de gran abundancia y está considerado como un recurso potencial para satisfacer la demanda de proteína en Perú. La harina de calamar gigante representa una alternativa a las proteínas tradicionales, el cual puede ser usado en la fortificación de alimentos. Objetivo. Optimizar el proceso de extracción e identificación de proteínas solubles de la harina de calamar gigante (HCG). Materiales y métodos. Este estudio se realizó en la Universidad Agraria La Molina, Lima, Perú, entre 2018 y 2019. Para obtener el mayor rendimiento de proteína soluble (Ŷ) extraída, se aplicó el método de extracción alcalina utilizando NaOH seguido de una precipitación ácida a un pH de 4,5. Se utilizó metodología de respuesta de superficie para determinar los parámetros óptimos para la extracción de proteínas como temperatura, concentración de NaCl, tiempo y la relación HCG: solvente. Se realizó un estudio de electroforesis 1D y 2D para encontrar la distribución de pesos moleculares e identificar las principales proteínas del HCG. Resultados. Los valores de respuesta óptima fueron la concentración de NaCl 0 M, un tiempo de extracción de 35 min, la relación HCG: solvente de 1:31,72 y una temperatura de 71,9 °C. Los pesos moleculares de las proteínas detectadas estuvieron en el rango de 6,5 y 38,37 kDa, lo que correspondería a tropomiosinas, troponinas y residuos de cadenas ligeras de miosina. Conclusiones. Este estudio permitió optimizar los parámetros de extracción e identificar las proteínas solubles las cuales corresponden a la fracción sarcoplasmática de la harina de calamar gigante (HCG), lo cuales pueden ser utilizados en la industria de alimentos.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alais, C., Linden, G., & Miclo, L. (2020). Biochimie alimentaire (6th ed.). DUNOD.

Association of Official Analytical Chemists. (2016). Official methods of analysis of AOAC International (20th ed.). AOAC International.

Aquino Méndez, E. M. (2016). Optimización del proceso de extracción de las proteínas de la torta de sacha inchi (Plukenetia volubilis L.) [Tesis de maestría, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://bit.ly/3i9NgsW

Ayala, J., & Pardo, R. (1995). Optimización por diseños experimentales: con aplicaciones en ingeniería. Editorial A&B.

Azagoh, C., Ducept, R., Garcia, R., Rakotozafy, L., Cuvelier, M. -E, Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24–31. https://doi.org/10.1016/j.foodres.2016.06.010

Blum, H., Beier, H., & Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8(2), 93–99. https://doi.org/10.1002/elps.1150080203

Calvo, M. C., Carranco, M. E., Salinas, C. A., & Carrillo, S. (2016). Composición química de harina de calamar gigante Dosidicus gigas. Archivos Latinoamericanos de Nutrición, 66(1), 74–81. https://www.alanrevista.org/ediciones/2016/1/art-9/

Cortés-Ruiz, J. A., Pacheco-Aguilar, R., Lugo-Sánchez, M., Carvallo-Ruiz, M. G., & García-Sánchez, G. (2008). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation. Food Chemistry, 110(2), 486–492. https://doi.org/10.1016/j.foodchem.2008.02.030

Csirke, J., Argüelles, J., Alegre, A., Ayón, P., Bouchon, M., Castillo, G., Castillo, R., Cisneros, R., Guevara-Carrasco, R., Lau, L., Mariátegui, L., Salazar, C., Tafur, R., Torrejón, E., & Yamashiro, C. (2018). Biología, estructura poblacional y pesquería de pota o calamar gigante (Dosidicus gigas) en el Perú. Boletín Instituto del Mar del Perú, 33(2), 302–364. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/46

De La Fuente-Betancourt, G., García-Carreño, F., Navarrete del Toro, M. Á., Pacheco-Aguilar, R., & Córdova-Murueta J. H. (2008). Effect of storage at 0 °C on mantle proteins and functional properties of jumbo squid. International Journal of Food Science and Technology, 43(7), 1263–1270. https://doi.org/10.1111/j.1365-2621.2007.01602.x

Deleu, L. J., Lambrecht, M. A., Van de Vondel, J., & Delcour, J. A. (2019). The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 25, 98–103. https://doi.org/10.1016/j.cofs.2019.02.017

Dihort-Garcia, G., Ocano-Higuera, V. M., Ezquerra-Brauer, J. M., Lugo-Sanchez, M. E., Pacheco-Aguilar, R., Barrales-Heredia, S. M., & Marquez-Rios, E. (2011). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) obtained by alkaline dissolution. CyTA - Journal of Food, 9(3), 171–179. https://doi.org/10.1080/19476337.2010.503905

Dublán García, O. (2001). Evaluación de la actividad proteolítica del manto de calamar gigante (Dosidicus gigas) [Tesis doctoral, Universidad Autónoma Metropolitana]. Library. https://bit.ly/3QiLUsf

Elizondo-Garza, P., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Protein recovery from skipjack tuna (Katsuwonus pelamis) wash water with different pH and temperature combinations. Revista Mexicana de Ingeniería Química, 16(1), 91–99. https://doi.org/10.24275/rmiq/Alim739

Espinoza, K, Roldán, D., & Martínez, N. (2021). Elaboración de Snack extruido a partir de cereales y concentrado de proteína de pota (Dosidicus gigas) y determinación de su vida útil. Anales Científico, 82(1), 180–191. http://doi.org/10.21704/ac.v82i1.1755

Fritz, M., Vecchi, B., Rinaldi, G., & Añón, M. C. (2011). Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chemistry, 126(3), 878–884. https://doi.org/10.1016/j.foodchem.2010.11.065

Galindo, J., Elías, A., Muñoz, E., Marrero, Y., González, N., & Sosa, A. (2017). Activadores ruminales, aspectos generales y sus ventajas en la alimentación de animales rumiantes. Cuban Journal of Agricultural Science, 51(1), 11–23. https://www.cjascience.com/index.php/CJAS/article/view/680

Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish byproducts and low-value fish: A review. Food Chemistry, 124(2), 422–431. https://doi.org/10.1016/j.foodchem.2010.06.078

Gutiérrez, H., & De la Vara, R. (2008). Análisis y diseño de experimentos (2nd ed.). McGraw Hill/Interamericana.

Hashimoto, K., Watabe, S., Kono, M., & Shiro, K. (1979). Muscle protein composition of sardine and mackerel. Bulletin of the Japanese Society of Scientific Fisheries, 45(11), 1435–1441. https://doi.org/10.2331/suisan.45.1435

Hou, F., Ding, W., Qu, W., Olayemi Oladejo, A., Xiong, F., Zhang, W., He, R., & Ma, H. (2017). Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chemistry, 218, 207–215. https://doi.org/10.1016/j.foodchem.2016.09.064

Jangchud, A., & Chinnan, M. S. (1999). Properties of peanut protein film: Sorption isotherm and plasticizer effect. LWT - Food Science and Technology, 32(2), 89–94. https://doi.org/10.1006/fstl.1998.0498

Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage. Nature, 227, 680–685. https://doi.org/10.1038/227680A0

Lopez-Enriquez, R. L., Ocano-Higuera, V. M., Torres-Arreola, W., Ezquerra-Brauer J. M., & Marquez-Rios, E. (2015). Chemical and functional characterization of sarcoplasmic proteins from giant squid (Dosidicus gigas) mantle. Journal of Chemistry, 2015, Article 538721. https://doi.org/10.1155/2015/538721

Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Luna, A. (2015, diciembre 13). La pota, alimento nutritivo, a bajo costo y mucha proteína. Diario Correo. Recuperado en junio 15, 2021, de: https://bit.ly/3VHmHcc

Ma, T., Wang, Q., & Wu, H. (2010). Optimization of extraction conditions for improving solubility of peanut protein concentrates by response surface methodology. LWT - Food Science and Technology, 43(9), 1450–1455. https://doi.org/10.1016/j.lwt.2010.03.015

Maza, S., & Rosales, M. (2004). Procesamiento de surimi de pota Dosidicus gigas por solubilización ácida-alcalina y precipitación isoeléctrica. Instituto Tecnológico de la Producción. https://repositorio.itp.gob.pe/handle/ITP/82

Maza, S., Rosales, M., & Castro, R. (2003). Efecto de un proceso de lixiviación ácida salina sobre la calidad del surimi de Dosidicus gigas “pota”. Instituto Tecnológico de la Producción. http://repositorio.itp.gob.pe/handle/ITP/103

Mignino, L. A:, & Paredi, M. E. (2006). Physico-chemical and functional properties of myofibrillar proteins from different species of molluscs. LWT – Food Science and Technology, 39(1), 35–42. https://doi.org/10.1016/j.lwt.2004.12.004

Momen, S., Alavi, F., & Aider, M. (2021). Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science & Technology, 110, 778–797. https://doi.org/10.1016/j.tifs.2021.02.052

Murphy, R. Y., & Marks, B. P. (2000). Effect of meat temperature on proteins, texture, and cook loss for ground chicken breast patties. Poultry Science, 79(1), 99–104. https://doi.org/10.1093/ps/79.1.99

Oomah, B. D., Mazza, G., & Cui, W. (1994). Optimization of protein extraction from flaxseed meal. Food Research International, 27(4), 355–361. https://doi.org/10.1016/0963-9969(94)90191-0

Pedreschi, F. (1993). Determinación de la composición proteica del músculo del manto de pota (Dosidicus gigas) [Tesis de Grado, no publicada]. Universidad Nacional Agraria La Molina.

Pedreschi Plasencia, R. P. (2009). A proteomics approach to study core breakdown disorder in stored ‘Conference’ pears [Doctoral thesis, Katholieke Universiteit Leuven]. Katholieke Universiteit Leuven Repository. https://lirias.kuleuven.be/retrieve/69378

Rivas, N., Dench, J. E., & Caygill, J. C. (1981). Nitrogen extractability of sesame (Sesame indicum L.) seed and the preparation of two proteins isolate. Journal Science Food Agriculture, 32, 565–571. https://doi.org/10.1002/jsfa.2740320607

Roldán Acero, D. (2007). Industrialización de harina de pota (Dosidicus gigas). Revista de la Sociedad Química del Perú, 73(2), 120–121.

Roldán-Acero, D. J., Omote Sibina, J. R., Osorio-Lescano, C. M., & Molleda-Ordoñez, A. A. (2021). Desarrollo de un producto extruido a base de cereales y concentrado de proteína de calamar gigante (Dosidicus gigas). Intropica, 16(1), 34–42. https://doi.org/10.21676/23897864.3777

Rojas Hurtado, D. P. (2009). Evaluación de la toxicidad a dosis repetidas (90 días) por vía oral del concentrado de proteína de pota (Dosidicus gigas), en ratas Sprague dawley [Tesis de Maestría, Universidad Nacional Agraria La Molina]. Repositorio de la Universidad Nacional Agraria La Molina. https://bit.ly/3Gmx2o2

Rovegno, N. (2021, julio 15). Pota. Wikipesca Perú. Recuperado en septiembre 23, 2021, de https://www.mardelperu.pe/pesca/13/pesqueria-pota

Shahidi, F., & Venugopal, V. (1994). Solubilization and thermostability of water dispersions of muscle structural proteins of atlantic herring (Clupea harengus). Journal of Agricultural and Food Chemistry, 42(7), 1440–1446. https://doi.org/10.1021/jf00043a010

Solari-Godiño, A., Córdova-Ramos, J. S., Pilco-Quesada, S., Cerrón-Mallqui, L. M., Albrecht-Ruiz, M., & Sánchez Hernández, J. (2017). Proximal composition and functional properties of lyophilizated surimi of Dosidicus gigas “jumbo squid “. Scientia Agropecuaria, 8(1), 57–62. https://doi.org/10.17268/sci.agropecu.2017.01.05

Reddy Surasani, V. K., Kumar Khatkar, S., & Singh, S. (2017). Effect of process variables on solubility and recovery yields of proteins from pangas (Pangasius pangasius) frames obtained by alkaline solubilization method: Characteristics of isolates. Food and Bioproducts Processing, 106, 137–146. https://doi.org/10.1016/j.fbp.2017.09.008

Zhang, R., Zhou, R., Pan, W., Lin, W., Zhang, X., Li, M., Li, J. Niu, F., & Li, A. (2017). Salting-in effect on muscle protein extracted from giant squid (Dosidicus gigas). Food Chemistry, 215, 256–262. https://doi.org/10.1016/j.foodchem.2016.07.177

Zhao, C. -C., Benjakul, S., & Eun, J. -B. (2019). Changes in protein compositions and textural properties of the muscle of skate fermented at 10 °C. International Journal of Food Properties, 22(1), 173–185. https://doi.org/10.1080/10942912.2019.1575396

Publicado

2023-01-17

Cómo citar

Omote-Sibina, J. R., & Roldán-Acero, D. J. (2023). Identificación de proteínas solubles presentes en la harina de calamar gigante (Dosidicus gigas) para consumo humano. Agronomía Mesoamericana, 34(2), 50264. https://doi.org/10.15517/am.v34i2.50264