Bacterial coinfections on foliar blight and bulb rot in onion (Allium cepa L.)




pantoea ananatis, Rahnella aquatilis, antagonism, pathogenicity


Introduction. The onion bulb (Allium cepa L.) is a cultivated vegetable characterized by its fleshy scales susceptible to phytopathogen attacks causing economic losses. The symptoms of foliar wilting, blighting, and rot of bulb can be caused by different genera and bacterial species that can co-infect the host, making it difficult to identify the causal agent. Objective. To evaluate the effect of bacterial co-infections on foliar wilt and bulb rot in onion. Materials and methods. The bacteria were isolated from onion plants with symptoms of leaf blight and bulb rot, from crops located in Choachí Cundinamarca, Colombia, collected in June 2018. Bacterial isolates were purified, identified, and inoculated individually and in a mixture on healthy onion leaves and bulbs. Six treatments per organ were evaluated: three with individual infections and three with co-infection. The lesion progress was measured in both organs for twelve days after inoculation. Results. Two bacterial species identified as Pantoea ananatis and Rahnella aquatilis were obtained from the foliar and bulb symptoms. In individual infections, the P. ananatis strain presented the highest virulence causing 34.29 % bulb damage, and 100 % leaf damage, while the R. aquatilis generated the lowest percentage of rotting in the bulb (8.87 %) and it did not produce wilt. In co-infections, the combination of P. ananatis and R. aquatilis produced the lowest percentages of bulb (15 %) and leaf (10 %) damage, associated with a decrease in the symptom’s expression. Conclusion. R. aquatilis acted as an antagonistic organism of P. ananatis and causes a delay in the development of foliar wilt and bulb rot symptoms in onion.


Download data is not yet available.


Abdullah, A. S., Moffat, C. S., Lopez-Ruiz, F. J., Gibberd, M. R., Hamblin, J., & Zerihun, A. (2017). Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Frontiers in Plant Science, 8, Article 1806.

Agronet. (2020). Estadísticas Agropecuarias.

Asselin, J. A. E., Bonasera, J. M., & Beer, S. V. (2018). Center rot of onion (Allium cepa) caused by Pantoea ananatis requires pepM, a predicted phosphonate-related gene. Molecular Plant-Microbe Interactions, 31(12), 1291–1300.

Asselin, J. E., Eikemo, H., Perminow, J., Nordskog, B., Brurberg, M. B., & Beer, S. V. (2019). Rahnella spp. are commonly isolated from onion (Allium cepa) bulbs and are weakly pathogenic. Journal of Applied Microbiology, 127(3), 812–824.

Barghouthi, S. A. (2011). A universal method for the identification of bacteria based on general PCR primers. Indian Journal of Microbiology, 51, 430–444.

Brady, C. L., Goszczynska, T., Venter, S. N., Cleenwerck, I., De Vos, P., Gitaitis, R. D., & Coutinho, T. A. (2011). Pantoea allii sp. nov., isolated from onion plants and seed. International Journal of Systematic and Evolutionary Microbiology, 61(4), 932–937.

Bouaichi, A., Benkirane, R., El-kinany, S., Habbadi, K., Lougraimzi, H., Sadik, S., Benbouazza, A., & Achbani, E. H. (2019). Potential effect of antagonistic bacteria in the management of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 1035-1040.

Carr, E. A., Zaid, A. M., Bonasera, J. M., Lorbeer, J. W., & Beer, S. V. (2013). Infection of onion leaves by Pantoea ananatis leads to bulb infection. Plant Disease, 97(12), 1524-1528.

Chen, Q., & Liu, S. (2019). Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology, 10, Article 2171.

Chen, W. -P., & Kuo, T. -T. (1993). A simple and rapid method for the preparation of gram negative bacterial genomic DNA. Nucleic Acids Research, 21(9), Article 2260.

Delétoile, A., Decré, D., Courant, S., Passet, V., Audo, J., Grimont, P., Arlet, G., & Brisse, S. (2009). Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. Journal of Clinical Microbiology, 47(2), 300–310.

Dutta, B., Barman, A., Srinivasan, R., Avci, U., Ullman, D., Langston, D., & Gitaitis, R. (2014). Transmission of Pantoea ananatis and P. agglomerans, causal agents of center rot of onion (Allium cepa), by onion thrips (Thrips tabaci) through feces. Phytopathology, 104(8), 812–819.

Edens, D. G., Gitaitis, R. D., Sanders, F. H., & Nischwitz, C. (2006). First report of Pantoea agglomerans causing a leaf blight and bulb rot of onions in Georgia. Plant Disease, 90(12), 1551.

Gateri, M. W., Nyankanga, R. O., Ambuko, J. L., & Muriuki, A. W. (2018). Growth, yield and quality of onion (Allium cepa L.) as influenced by nitrogen and time of topdressing. International Journal of Plant & Soil Science, 23(3), 1–13.

Gitaitis, R. D., & Gay, J. D. (1997). First report of a leaf blight, seed stalk rot, and bulb decay of onion by Pantoea ananas in Georgia. Plant Disease, 81(9), 1096.

Guo, Y. B., Li, J., Li, L., Chen, F., Wu, W., Wang, J., & Wang, H. (2009). Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall. Applied and Environmental Microbiology, 75(21), 6792–6803.

Habbadi, K., Benkirane, R., Benbouazza, A., Bouaichi, A., Maafa, I., Chapulliot, D., & Achbani, E. H. (2017). Biological control of grapevine crown gall caused by Allorhizobium vitis using bacterial antagonists. International Journal of Science and Research, 6(6), 1390–1397.

Instituto Colombiano Agropecuario. (2012). Manejo fitosanitario del cultivo de hortalizas. Medidas para la temporada invernal.

Jia, L., Xie, J., Zhao, J., Cao, D., Liang, Y., Hou, X., Wang, L., & Li, Z. (2017). Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Frontiers in Cellular and Infection Microbiology, 7, Article 338.

Kong, W. -L., Rui, L., Ni, H., & Wu, X. -Q. (2020). Antifungal effects of volatile organic compounds produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Frontiers in Microbiology, 11, Article 1114.

Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Frontiers in Plant Science, 8, Article 2016.

Lee, Y., Park, J., Kim, S., Park, I., & Seo, Y. -S. (2016). Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Molecular Plant Pathology, 17(1), 65–76.

Li, L., Jiao, Z., Hale, L., Wu, W., & Guo, Y. (2014). Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PloS One, 9(12), Article e115010.

Limoli, D., Yang, J., Khansaheb, M., Helfman, B., Peng, L., Stecenko, A. A., & Goldberg, J. (2016). Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes. European Journal of Clinical Microbiology & Infectious Diseases, 35, 947–953.

Metzger, D. W., & Sun, K. (2013). Immune Dysfunction and Bacterial Co-Infections following Influenza. Journal of Immunology, 191(5), 2047–2052.

Sallam, N. M. (2011). Biological control of common blight of bean (Phaseolus vulgaris) caused by Xanthomonas axonopodis pv. phaseoli by using the bacterium Rahnella aquatilis. Archives of Phytopathology and Plant Protection, 44(20), 1966–1975.

Polidore, A. L. A., Furiassi, L., Hergenrother, P. J., & Metcalf, W. W. (2021). A Phosphonate Natural Product Made by Pantoea ananatis is Necessary and Sufficient for the Hallmark Lesions of Onion Center Rot. mBio, 12(1), Article e03402-20.

Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). The American Phytopathological Society.

Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18842–18847.

Stice, S. P., Yoon Shin, G., De Armas, S., Koirala, S., Galván, G. A., Siri, M. I., Severns, P. M., Coutinho, T., Dutta, B., & Kvitko, B. H. (2021). The distribution of onion virulence gene clusters among Pantoea spp. Frontiers in Plant Science, 12, Article 643787.

Stumpf, S., Kvitko, B., Gitaitis, R., & Dutta, B. (2018). Isolation and characterization of novel Pantoea stewartii subsp. indologenes strains exhibiting center rot in onion. Plant Disease, 102(4), 727–733.

Susi, H., Barrès, B., Vale, P., & Laine, A. -L. (2015). Co-infection alters population dynamics of infectious disease. Nature Communications, 6, Article 5975.

Thu Nga, N. T., Ngoc Tran, T., Holtappels, D., Kim Ngan, N. L., Phuoc Hao, N., Vallino, M., Kieu Tien, D. T., Khanh-Pham, N. H., Lavigne, R., Kamei, K., Wagemans, J., & Jones, J. B. (2021). phage biocontrol of bacterial leaf blight disease on welsh onion caused by Xanthomonas axonopodis pv. allii. Antibiotics, 10(5), Article 517.

Tsuji, M., & Kadota, I. (2020). Identification and phylogenetic analysis of Burkholderia cepacia complex bacteria isolated from rot of onion bulbs in Tohoku region of Japan. Journal of General Plant Pathology, 86, 376–386.

Tsuji, M., & Shinichi, F. (2021). The first report of bacterial streak and rot of onion caused by Pseudomonas viridiflava in Japan. Plant Disease, 105(10), 3288.

Vasseur-Coronado, M., Dupré du Boulois, H., Pertot, L., & Puopolo, G. (2020). Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research, 245, Article 126672.

Weller-Stuart, T., Toth, I., De Maayer, P., & Coutinho, T. (2017). Swimming and twitching motility are essential for attachment and virulence of Pantoea ananatis in onion seedlings. Molecular Plant Pathology, 18(5), 734–745.

Yin, C., Yang, W., Meng, J., Lv, Y., Wang, J., & Huang, B. (2017). Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalized pneumonia patients has a synergic and significant impact on clinical outcomes. European Journal of Clinical Microbiology & Infectious Diseases, 36, 2231–2235.

Yuan, L., Li, L., Zheng, F., Shi, Y., Xie, X., Chai, A., & Li, B. (2020). The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities. Archives of Microbiology, 202, 483–499.

Yurgel, S. N., Abbey, L., Loomer, N., Gillis-Madden, R., & Mammoliti, M. (2018). Microbial communities associated with storage onion. Phytobiomes, 2(1), 35–41.

Zaid, A. M., Bonasera, J. M., & Beer, S. V. (2012). OEM--a new medium for rapid isolation of onion-pathogenic and onion-associated bacteria. Journal of Microbiological Methods, 91(3), 520–526.



How to Cite

Jiménez-Acero, J. C., Raybaudi-Massilia, R., & González-Almario, A. (2023). Bacterial coinfections on foliar blight and bulb rot in onion (Allium cepa L.). Agronomía Mesoamericana, 34(2), 52204.