Coinfecciones bacterianas en el tizón foliar y pudrición del bulbo en cebolla (Allium cepa L.)

Autores/as

DOI:

https://doi.org/10.15517/am.v34i2.52204

Palabras clave:

Pantoea ananatis, Rahnella aquatilis, antagonismo, patogenicidad

Resumen

Introducción. La cebolla de bulbo (Allium cepa L.) es una hortaliza que se caracteriza por sus escamas carnosas susceptibles al ataque de fitopatógenos que causan pérdidas económicas. Los síntomas de tizón foliar y la pudrición del bulbo, pueden ser causados por diferentes géneros y especies bacterianas que pueden coinfectar al hospedante, lo que dificulta la identificación del agente causal. Objetivo. Evaluar el efecto de coinfecciones bacterianas en el tizón foliar y la pudrición del bulbo en cebolla. Materiales y métodos. Las bacterias fueron aisladas de plantas de cebollas con síntomas de tizón foliar y pudrición de bulbos, provenientes de cultivos ubicados en Choachí Cundinamarca, Colombia, recolectadas en junio de 2018. Los aislamientos bacterianos se purificaron, identificaron e inocularon de manera individual y en mezcla en hojas y bulbos de cebolla sanos. Se evaluaron seis tratamientos por órgano: tres con infecciones individuales y tres con coinfección. El progreso de la lesión se midió en ambos órganos durante doce días después de la inoculación. Resultados. Se obtuvieron dos especies bacterianas identificadas como Pantoea ananatis Rahnella aquatilis a partir de los síntomas foliares y del bulbo de cebolla. En las infecciones individuales, la cepa P. ananatis presentó la mayor virulencia con un 34,29 % de daño en el bulbo y un 100 % en hoja, mientras que R. aquatilis generó el menor porcentaje de pudrición en el bulbo (8,87 %) y no produjo tizón. En las coinfecciones, la combinación de P. ananatis y R. aquatilis produjo los menores porcentajes de daño en el bulbo (15 %) y en la hoja (10 %), asociada a una disminución de la expresión de los síntomas. Conclusiones. R. aquatilis actuó como organismo antagonista de P. ananatis y provocó un retraso en el desarrollo de los síntomas de tizón foliar y pudrición del bulbo en cebolla.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah, A. S., Moffat, C. S., Lopez-Ruiz, F. J., Gibberd, M. R., Hamblin, J., & Zerihun, A. (2017). Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Frontiers in Plant Science, 8, Article 1806. http://doi.org/10.3389/fpls.2017.01806

Agronet. (2020). Estadísticas Agropecuarias. http://www.agronet.gov.co/estadistica/Paginas/default.aspx

Asselin, J. A. E., Bonasera, J. M., & Beer, S. V. (2018). Center rot of onion (Allium cepa) caused by Pantoea ananatis requires pepM, a predicted phosphonate-related gene. Molecular Plant-Microbe Interactions, 31(12), 1291–1300. https://doi.org/10.1094/MPMI-04-18-0077-R

Asselin, J. E., Eikemo, H., Perminow, J., Nordskog, B., Brurberg, M. B., & Beer, S. V. (2019). Rahnella spp. are commonly isolated from onion (Allium cepa) bulbs and are weakly pathogenic. Journal of Applied Microbiology, 127(3), 812–824. https://doi.org/10.1111/jam.14340

Barghouthi, S. A. (2011). A universal method for the identification of bacteria based on general PCR primers. Indian Journal of Microbiology, 51, 430–444. https://doi.org/10.1007/s12088-011-0122-5

Brady, C. L., Goszczynska, T., Venter, S. N., Cleenwerck, I., De Vos, P., Gitaitis, R. D., & Coutinho, T. A. (2011). Pantoea allii sp. nov., isolated from onion plants and seed. International Journal of Systematic and Evolutionary Microbiology, 61(4), 932–937. https://doi.org/10.1099/ijs.0.022921-0

Bouaichi, A., Benkirane, R., El-kinany, S., Habbadi, K., Lougraimzi, H., Sadik, S., Benbouazza, A., & Achbani, E. H. (2019). Potential effect of antagonistic bacteria in the management of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 1035-1040. https://doi.org/10.15414/jmbfs.2019.8.4.1035-1040

Carr, E. A., Zaid, A. M., Bonasera, J. M., Lorbeer, J. W., & Beer, S. V. (2013). Infection of onion leaves by Pantoea ananatis leads to bulb infection. Plant Disease, 97(12), 1524-1528. https://doi.org/10.1094/PDIS-06-12-0597-RE

Chen, Q., & Liu, S. (2019). Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology, 10, Article 2171. https://doi.org/10.3389/fmicb.2019.02171

Chen, W. -P., & Kuo, T. -T. (1993). A simple and rapid method for the preparation of gram negative bacterial genomic DNA. Nucleic Acids Research, 21(9), Article 2260. https://doi.org/10.1093/nar/21.9.2260

Delétoile, A., Decré, D., Courant, S., Passet, V., Audo, J., Grimont, P., Arlet, G., & Brisse, S. (2009). Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. Journal of Clinical Microbiology, 47(2), 300–310. https://doi.org/10.1128/JCM.01916-08

Dutta, B., Barman, A., Srinivasan, R., Avci, U., Ullman, D., Langston, D., & Gitaitis, R. (2014). Transmission of Pantoea ananatis and P. agglomerans, causal agents of center rot of onion (Allium cepa), by onion thrips (Thrips tabaci) through feces. Phytopathology, 104(8), 812–819. https://doi.org/10.1094/phyto-07-13-0199-r

Edens, D. G., Gitaitis, R. D., Sanders, F. H., & Nischwitz, C. (2006). First report of Pantoea agglomerans causing a leaf blight and bulb rot of onions in Georgia. Plant Disease, 90(12), 1551. https://doi.org/10.1094/PD-90-1551A

Gateri, M. W., Nyankanga, R. O., Ambuko, J. L., & Muriuki, A. W. (2018). Growth, yield and quality of onion (Allium cepa L.) as influenced by nitrogen and time of topdressing. International Journal of Plant & Soil Science, 23(3), 1–13. https://doi.org/10.9734/IJPSS/2018/42135

Gitaitis, R. D., & Gay, J. D. (1997). First report of a leaf blight, seed stalk rot, and bulb decay of onion by Pantoea ananas in Georgia. Plant Disease, 81(9), 1096. https://doi.org/10.1094/PDIS.1997.81.9.1096C

Guo, Y. B., Li, J., Li, L., Chen, F., Wu, W., Wang, J., & Wang, H. (2009). Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall. Applied and Environmental Microbiology, 75(21), 6792–6803. https://doi.org/10.1128/AEM.00902-09

Habbadi, K., Benkirane, R., Benbouazza, A., Bouaichi, A., Maafa, I., Chapulliot, D., & Achbani, E. H. (2017). Biological control of grapevine crown gall caused by Allorhizobium vitis using bacterial antagonists. International Journal of Science and Research, 6(6), 1390–1397. https://www.ijsr.net/get_abstract.php?paper_id=ART20174478

Instituto Colombiano Agropecuario. (2012). Manejo fitosanitario del cultivo de hortalizas. Medidas para la temporada invernal. https://bit.ly/2NFfR8S

Jia, L., Xie, J., Zhao, J., Cao, D., Liang, Y., Hou, X., Wang, L., & Li, Z. (2017). Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Frontiers in Cellular and Infection Microbiology, 7, Article 338. https://doi.org/10.3389/fcimb.2017.00338

Kong, W. -L., Rui, L., Ni, H., & Wu, X. -Q. (2020). Antifungal effects of volatile organic compounds produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Frontiers in Microbiology, 11, Article 1114. https://doi.org/10.3389/fmicb.2020.01114

Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Frontiers in Plant Science, 8, Article 2016. https://doi.org/10.3389/fpls.2017.02016

Lee, Y., Park, J., Kim, S., Park, I., & Seo, Y. -S. (2016). Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Molecular Plant Pathology, 17(1), 65–76. https://doi.org/10.1111/mpp.12262

Li, L., Jiao, Z., Hale, L., Wu, W., & Guo, Y. (2014). Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PloS One, 9(12), Article e115010. https://doi.org/10.1371/journal.pone.0115010

Limoli, D., Yang, J., Khansaheb, M., Helfman, B., Peng, L., Stecenko, A. A., & Goldberg, J. (2016). Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes. European Journal of Clinical Microbiology & Infectious Diseases, 35, 947–953. https://doi.org/10.1007/s10096-016-2621-0

Metzger, D. W., & Sun, K. (2013). Immune Dysfunction and Bacterial Co-Infections following Influenza. Journal of Immunology, 191(5), 2047–2052. https://doi.org/10.4049/jimmunol.1301152

Sallam, N. M. (2011). Biological control of common blight of bean (Phaseolus vulgaris) caused by Xanthomonas axonopodis pv. phaseoli by using the bacterium Rahnella aquatilis. Archives of Phytopathology and Plant Protection, 44(20), 1966–1975. https://doi.org/10.1080/03235408.2010.544469

Polidore, A. L. A., Furiassi, L., Hergenrother, P. J., & Metcalf, W. W. (2021). A Phosphonate Natural Product Made by Pantoea ananatis is Necessary and Sufficient for the Hallmark Lesions of Onion Center Rot. mBio, 12(1), Article e03402-20. https://doi.org/10.1128/mBio.03402-20

Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). The American Phytopathological Society.

Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18842–18847. https://doi.org/10.1073/pnas.0708139104

Stice, S. P., Yoon Shin, G., De Armas, S., Koirala, S., Galván, G. A., Siri, M. I., Severns, P. M., Coutinho, T., Dutta, B., & Kvitko, B. H. (2021). The distribution of onion virulence gene clusters among Pantoea spp. Frontiers in Plant Science, 12, Article 643787. https://doi.org/10.3389/fpls.2021.643787

Stumpf, S., Kvitko, B., Gitaitis, R., & Dutta, B. (2018). Isolation and characterization of novel Pantoea stewartii subsp. indologenes strains exhibiting center rot in onion. Plant Disease, 102(4), 727–733. https://doi.org/10.1094/PDIS-08-17-1321-RE

Susi, H., Barrès, B., Vale, P., & Laine, A. -L. (2015). Co-infection alters population dynamics of infectious disease. Nature Communications, 6, Article 5975. https://doi.org/10.1038/ncomms6975

Thu Nga, N. T., Ngoc Tran, T., Holtappels, D., Kim Ngan, N. L., Phuoc Hao, N., Vallino, M., Kieu Tien, D. T., Khanh-Pham, N. H., Lavigne, R., Kamei, K., Wagemans, J., & Jones, J. B. (2021). phage biocontrol of bacterial leaf blight disease on welsh onion caused by Xanthomonas axonopodis pv. allii. Antibiotics, 10(5), Article 517. https://doi.org/10.3390/antibiotics10050517

Tsuji, M., & Kadota, I. (2020). Identification and phylogenetic analysis of Burkholderia cepacia complex bacteria isolated from rot of onion bulbs in Tohoku region of Japan. Journal of General Plant Pathology, 86, 376–386. https://doi.org/10.1007/s10327-020-00937-z

Tsuji, M., & Shinichi, F. (2021). The first report of bacterial streak and rot of onion caused by Pseudomonas viridiflava in Japan. Plant Disease, 105(10), 3288. https://doi.org/10.1094/PDIS-02-21-0296-PDN

Vasseur-Coronado, M., Dupré du Boulois, H., Pertot, L., & Puopolo, G. (2020). Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research, 245, Article 126672. https://doi.org/10.1016/j.micres.2020.126672

Weller-Stuart, T., Toth, I., De Maayer, P., & Coutinho, T. (2017). Swimming and twitching motility are essential for attachment and virulence of Pantoea ananatis in onion seedlings. Molecular Plant Pathology, 18(5), 734–745. https://doi.org/10.1111/mpp.12432

Yin, C., Yang, W., Meng, J., Lv, Y., Wang, J., & Huang, B. (2017). Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalized pneumonia patients has a synergic and significant impact on clinical outcomes. European Journal of Clinical Microbiology & Infectious Diseases, 36, 2231–2235. https://doi.org/10.1007/s10096-017-3050-4

Yuan, L., Li, L., Zheng, F., Shi, Y., Xie, X., Chai, A., & Li, B. (2020). The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities. Archives of Microbiology, 202, 483–499. https://doi.org/10.1007/s00203-019-01758-1

Yurgel, S. N., Abbey, L., Loomer, N., Gillis-Madden, R., & Mammoliti, M. (2018). Microbial communities associated with storage onion. Phytobiomes, 2(1), 35–41. https://doi.org/10.1094/PBIOMES-12-17-0052-R

Zaid, A. M., Bonasera, J. M., & Beer, S. V. (2012). OEM--a new medium for rapid isolation of onion-pathogenic and onion-associated bacteria. Journal of Microbiological Methods, 91(3), 520–526. https://doi.org/10.1016/j.mimet.2012.09.031

Publicado

2023-02-21

Cómo citar

Jiménez-Acero, J. C., Raybaudi-Massilia, R., & González-Almario, A. (2023). Coinfecciones bacterianas en el tizón foliar y pudrición del bulbo en cebolla (Allium cepa L.). Agronomía Mesoamericana, 34(2), 52204. https://doi.org/10.15517/am.v34i2.52204