SNP fingerprinting and farmer criteria for selection, multiplication, and traceability of cacao in Nicaragua
DOI:
https://doi.org/10.15517/am.2023.52299Keywords:
Theobroma cacao, registration, plant breeding, genetic groups, criolloAbstract
Introduction. Genetic diversity, registration, and traceability of cacao planting material are the essential tripod to support its sustainable cultivation. In Nicaragua, cocoa planting material is mostly obtained from seeds, which leads to great variability in yield, bean quality, and tolerance to pests and diseases. Farmers, technical staff, development projects, and investors depend on a limited supply of elite trees as a reliable source of genetic material to support new cacao fronts and meet market quality standards. Therefore, the development of a national genetic improvement program and a planting material traceability system in Nicaragua are necessary to improve the sustainability of cacao cultivation. Objective. To evaluate the genetic resources on farms and provide information for future breeding programs, as well as to lay foundation for a national traceability and certification system. Materials and methods. Fourty-nine elite trees selected by farmers in the main producing regions in Nicaragua between 2018 and 2020 were sampled. Ninety-three SNP markers were used to characterize them and resolve their genetic origins. Results. The evaluated cacao trees had a narrow genetic background, mainly composed of hybrids with Amelonado (36 %), Criollo (17 %) and Iquitos (15 %) origins. A set of trees with high genetic diversity that could be incorporated into a selection and breeding program was identified. Conclusion. Fingerprinting with SNP markers was a useful tool for evaluating the genetic links of cultivated cacao and can be used for varietal identity test at the farm level. The study provided the basis for developing both a breeding program and a traceability system of cacao planting material in Nicaragua.
Downloads
References
Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE, 14(4), Article e0214810. https://doi.org/10.1371/journal.pone.0214810
Arevalo-Gardini, E., Meinhardt, L. W., Zuñiga, L. C., Arévalo-Gardni, J., Motilal, L., & Zhang, D. (2019). Genetic identity and origin of “Piura Porcelana” a fine-flavored traditional variety of cacao (Theobroma cacao) from the Peruvian Amazon. Tree Genetics & Genomes, 15, Article 11. https://doi.org/10.1007/s11295-019-1316-y
Ayestas, E., Orozco, L., Astorga, C., Munguía, R., & Vega, C. (2013). Caracterización de árboles promisorios de cacao en fincas orgánicas de Waslala, Nicaragua. Agroforestería En Las Américas, 49, 18–25.
Belt, T. (2003). El naturalista en Nicaragua (Serie viajeros No. 4, Trad. J. I. Barquero). Colección Cultural de Centro America.
Bidot Martínez, I., Riera Nelson, M., Flamand, M. -C., & Bertin, P. (2015). Genetic diversity and population structure of anciently introduced Cuban cacao Theobroma cacao plants. Genetic Resources and Crop Evolution, 62(1), 67–84. https://doi.org/10.1007/s10722-014-0136-z
Boza, E. J., Irish, B. M., Meerow, A. W., Tondo, C. L., Rodríguez, O. A., Ventura-López, M., Gómez, J. A., Moore, J. M., Zhang, D., Motamayor, J. C., & Schnell, R. J. (2013). Genetic diversity, conservation, and utilization of Theobroma cacao L.: Genetic resources in the Dominican Republic. Genetic Resources and Crop Evolution, 60(2), 605–619. https://doi.org/10.1007/s10722-012-9860-4
Ceccarelli, V., Lastra, S., Loor Solórzano, R. G., Chacón, W. W., Nolasco, M., Sotomayor Cantos, I. A., Plaza Avellán, L. F., López, D. A., Fernández Anchundia, F. M., Dessauw, D., Orozco-Aguilar, L., & Thomas, E. (2022). Conservation and use of genetic resources of cacao (Theobroma cacao L.) by gene banks and nurseries in six Latin American countries. Genetic Resources and Crop Evolution, 69(3), 1283–1302. https://doi.org/10.1007/s10722-021-01304-3
Cilas, C., & Bastide, P. (2020). Challenges to cocoa production in the face of climate change and the spread of pests and diseases. Agronomy, 10(9), Article 1232. https://doi.org/10.3390/agronomy10091232
Cornejo, O. E., Yee, M. -C., Dominguez, V., Andrews, M., Sockell, A., Strandberg, E., Livingstone III, D., Stack, C., Romero, A., Umaharan, P., Royaert, S., Tawari, N. R., Ng, P., Gutierrez, O., Phillips, W., Mockaitis, K., Bustamante, C. D., & Motamayor, J. C. (2018). Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Communications Biology, 1, Article 167. https://doi.org/10.1038/s42003-018-0168-6
Cosme, S., Cuevas, H. E., Zhang, D., Oleksyk, T. K., & Irish, B. M. (2016). Genetic diversity of naturalized cacao (Theobroma cacao L.) in Puerto Rico. Tree Genetics & Genomes, 12, Article 88. https://doi.org/10.1007/s11295-016-1045-4
De Lorenzis, G., Mercati, F., Bergamini, C., Cardone, M. F., Lupini, A., Mauceri, A., Caputo, A. R., Abbate, L., Barbagallo, M. G., Antonacci, D., Sunseri, F., & Brancadoro, L. (2019). SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination. BMC Plant Biology, 19, Article 7. https://doi.org/10.1186/s12870-018-1576-y
Dinarti, D., Susilo, A. W., Meinhardt, L. W., Ji, K., Motilal, L. A., Mischke, S., & Zhang, D. (2015). Genetic diversity and parentage in farmer selections of cacao from southern Sulawesi, Indonesia revealed by microsatellite markers. Breeding Science, 65(5), 438–446. https://doi.org/10.1270/jsbbs.65.438
ECOM Agroindustrial Corp. Lt. (2020). Breaking new ground in coffee & cacao farming in Nicaragua. https://bit.ly/3Rc19Tz
End, M. J., Daymond, A. J., & Hadley, P. (2021). Directrices técnicas para el movimiento seguro del germoplasma del cacao (Versión revisada de las Directrices técnicas de FAO/IPGRI No. 20). Bioversity International. https://hdl.handle.net/10568/104540
Farrell, A. D., Rhiney, K., Eitzinger, A., & Umaharan, P. (2018). Climate adaptation in a minor crop species: is the cocoa breeding network prepared for climate change? Agroecology and Sustainable Food Systems, 42(7), 812–833. https://doi.org/10.1080/21683565.2018.1448924
Herrera-García, K., Aragón-Obando, E., & Aguilar-Bustamante, V. (2015). Diversidad genética en 105 accesiones de cacao (Theobroma cacao L.) colectadas en nicaragua, utilizando 10 marcadores moleculares tipo SSR. La Calera, 15(25), 54–62. https://lacalera.una.edu.ni/index.php/CALERA/article/view/260
Hütz-Adams, F., Campos, P., & Fountain, A. C. (2022). Barómetro del cacao - Base de referencia para Latinoamérica. Cocoa Barometer. https://cocoabarometer.org/wp-content/uploads/2022/11/220923-Cocoa-Barometer-Americas-ES.pdf
International Cocoa Organization. (2015, September 18). Report by the chairman on the meeting of the ICCO Ad Hoc Panel on fine or flavour cocoa to review annex “C” of the international cocoa agreement, 2010. https://www.icco.org/wp-content/uploads/2019/06/FFP-4-5-Report-of-meeting-final-edited-w.pdf
Instituto Nicaragüense de Tecnología Agropecuaria. (2018). Catálogo de clones de cacao. https://www.caja-pdf.es/2018/12/04/catalogo-de-clones-de-cacao-fida-grun2018/catalogo-de-clones-de-cacao-fida-grun2018.pdf
Ji, K., Zhang, D., Motilal, L. A., Boccara, M., Lachenaud, P., & Meinhardt, L. W. (2013). Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genetic Resources and Crop Evolution, 60(2), 441–453. https://doi.org/10.1007/s10722-012-9847-1
Jiménez, O. R. (2019). Common bean (Phaseolus vulgaris L) breeding. In J. M. Al-Khayri, S. Mohan Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Legumes (Vol. 7, pp. 151–200). Springer. https://doi.org/10.1007/978-3-030-23400-3_5
Lanaud, C., Fouet, O., Legavre, T., Lopes, U., Sounigo, O., Eyango, M. C., Mermaz, B., Da Silva, M. R., Loor Solorzano, R. G., Argout, X., Gyapay, G., Ebaiarrey, H. E., Colonges, K., Sanier, C., Rivallan, R., Mastin, G., Cryer, N., Boccara, M., Verdeil, J. -L., … Clément, D. (2017). Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility. Journal of Experimental Botany, 68(17), 4775–4790. https://doi.org/10.1093/jxb/erx293
Li, Y., Zhang, D., Motilal, L. A., Lachenaud, P., Mischke, S., & Meinhardt, L. W. (2021). Traditional varieties of cacao (Theobroma cacao) in Madagascar: their origin and dispersal revealed by SNP markers. Beverage Plant Research, 1, Article 4. https://doi.org/10.48130/BPR-2021-0004
Lindo, A. A., Robinson, D. E., Tennant, P. F., Meinhardt, L. W., & Zhang, D. (2018). Molecular Characterization of Cacao (Theobroma cacao) Germplasm from Jamaica Using Single Nucleotide Polymorphism (SNP) Markers. Tropical Plant Biology, 11(3–4), 93–106. https://doi.org/10.1007/s12042-018-9203-5
López, M. E., Ramírez, O. A., Dubón, A., Cherubino Ribeiro, T. H., Díaz, F. J., & Chalfun-Junior, A. (2021). Sexual compatibility in cacao clones drives arrangements in the field leading to high yield. Scientia Horticulturae, 287, article 110276. https://doi.org/10.1016/j.scienta.2021.110276
Lukman, Zhang, D., Susilo, A. W., Dinarti, D., Bailey, B., Mischke, S., & Meinhardt, L. W. (2014). Genetic Identity, Ancestry and Parentage in Farmer Selections of Cacao from Aceh, Indonesia Revealed by Single Nucleotide Polymorphism (SNP) Markers. Tropical Plant Biology, 7(3–4), 133–143. https://doi.org/10.1007/s12042-014-9144-6
Mahabir, A., Motilal, L. A., Gopaulchan, D., Sankar, A., & Umaharan, P. (2017, November 13-17). Identification of a core SNP panel for cacao identity and population analyses [Conference presentation abstract]. International Symposium on Cocoa Research (ISCR), Lima, Peru. https://www.cabdirect.org/cabdirect/abstract/20203127067
Martorell Mir, J. (2020). Caracterización a nivel nacional del sector cacao en Nicaragua. Gobernanza e incidencia en la cadena de valor de cacao en Nicaragua. Asociación de Productores y Exportadores de Nicaragua, & Cooperación Suiza.
Mata-Quirós, A., Arciniegas-Leal, W., Phillips-Mora, W., Meinhardt, L. W., & Zhang, D. (2017, November 13-17). Understanding the genetic structure and parentage of the clonal series of cacao UF, CC, PMCT and ARF preserved in the International Cacao Collection at CATIE (IC3) [Conference presentation abstract]. International Symposium on Cocoa Research (ISCR), Lima, Peru.
Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10), Article e33111. https://doi.org/10.1371/journal.pone.0003311
Motamayor, J. C., Mockaitis, K., Schmutz, J., Haiminen, N., Livingstone III, D., Cornejo, O., Findley, S. D., Zheng, P., Utro, F., Royaert, S., Saski, C., Jenkins, J., Podicheti, R., Zhao, M., Scheffler, B. E., Stack, J. C., Feltus, F. A., Mustiga, G. M., Amores, F., … Kuhn, D. N. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 14(6), Article r53. https://doi.org/10.1186/gb-2013-14-6-r53
Padi, F. K., Ofori, A., Takrama, J., Djan, E., Opoku, S. Y., Dadzie, A. M., Bhattacharjee, R., Motamayor, J. C., & Zhang, D. (2015). The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao. Tree Genetics and Genomes, 11, Article 44. https://doi.org/10.1007/s11295-015-0875-9
Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quiros, A., & Motamayor-Arias, J. C. (2012). Catálogo de clones de cacao seleccionados por el CATIE para siembras comerciales (Manual técnico 105). Centro Agronómico Tropical de Investigación y Enseñanza.
Pritchard Lab, Stanford University (2012). Structure (2.3.4) [Computer software]. https://web.stanford.edu/group/pritchardlab/structure.html
R Core team. (2020). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/
Radell, D. R. (1971). Historical geography of Western Nicaragua: The spheres of influence of León, Granada, and Managua, 1519-1965. Berkeley.
Ruiz, J. C., Roa Gamboa, O., & Marin Arguello, I. (2011). Molecular Ecology of genetic diversity of cacao cultivated in the south-east region of Nicaragua. International Research Journal of Agricultural Science, 1(1), 6–13.
Somarriba, E. J. (2013). Oferta mundial de tecnologías de producción de cacao prioritarias para elevar los rendimientos, mejorar la calidad del cacao y asegurar la sostenibilidad y seguridad alimentaria de las familias cacaoteras de Centroamérica. Unidad Regional para el Desarrollo Sostenible.
Trognitz, B., Scheldeman, X., Hansel-Hohl, K., Kuant, A., Grebe, H., & Hermann, M. (2011). Genetic population structure of cacao plantings within a young production area in Nicaragua. PLoS ONE, 6(1), Article e16056. https://doi.org/10.1371/journal.pone.0016056
Turnbull, C. J., Daymond, A. J., Gutierrez, O., Hadley, P., Livingstone, D., Motamayor, J. C., Phillips, W., Umaharan, P., & Zhang, D. (2017, November 13-17). Adopting Reference Genotypes to identify off-types in cacao collections [Conference presentation abstract]. International Symposium on Cocoa Research, Lima, Peru.
Wiegel, J., del Río, M., Gutiérrez, J. F., Claros, L., Sánchez, D., Gómez, L., González, C., & Reyes, B. (2020). The cacao market system in Nicaragua. Opportunities for supporting renovation and rehabilitation. International Center for Tropical Agriculture. https://cgspace.cgiar.org/handle/10568/108120
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Melanie Bordeaux, Jonny Alonso Castillo, Abner Castro Olivas, Oswalt R. Jiménez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).