Physiological maturity in maize (Zea mays L.) seeds through morphological markers and moisture content

Authors

DOI:

https://doi.org/10.15517/am.2023.53269

Keywords:

seed quality, vigour, accelerated aging, germination

Abstract

Introduction. Physiological maturity is the accumulation of the maximum dry matter content, the milk line and the black layer affect the corn seed, as morphological factors of the degree of maturation. The milk line is related to the solidification of starch, and the black layer with the cessation of the translocation of soluble substances from the plant to the grain. The moisture content is related to the physiological maturity and the harvest opportunity associated with the maximum quality of the product. Objective. To determine seeds physiological maturity, through morphological markers and moisture content, and its physiological quality relationship. Materials and methods. The study was carried out at Colegio de Postgraduados, Campus Montecillo during the months of September-October, 2021. By weekly sampling cobs of experimental cv. (Amarillo × V-54A) F6 genotype, seeds from the apex were taken, middle section and basis. In function by its moisture content, the milk line, black layer, and the relationship of these factor with physiological quality (germination and vigor- accelerated aging and cold tests) were determined. Results. Moisture content was below than referred in literature (35 %), also, physiological maturity was defined visually by milk line and black layer; on the other hand, as sampling were done, there was an increase in seed germination with the less moisture content; what vigor refers, a better response was detected by accelerated aging test. Conclusions. As the moisture content decreased, germination increased. The morphological markers allowed to determine the time in which the maize seed reached the physiological maturity and with it, the maximum quality.

Downloads

Download data is not yet available.

References

Aguilar Benítez, G., Vázquez Díaz, E. G., Castro Rivera, R., Cruz Crespo, E., & Jarquín Gálvez, R. (2019). Germinación de cultivares de frijol con características físicas contrastantes bajo condiciones de estrés osmótico. Revista Mexicana de Ciencias Agrícolas, 10(2), 239–251. https://doi.org/10.29312/remexca.v10i2.720

Ajayi, S. A., Rühl, G., & Greef, J. M. (2005). Physiological basis of quality development in relation to compositional changes in maize seed. Seed Science and Technology, 33(3), 605–621. https://doi.org/10.15258/sst.2005.33.3.08

Antuna-Grijalva, O., Rincón-Sánchez, F., Gutiérrez-del Río, E., Ruiz-Torres, N. A., & Bustamante-García, L. (2003). Componentes genéticos de caracteres agronómicos y de calidad fisiológica de semillas en líneas de maíz. Revista Fitotecnia Mexicana, 26(1), 11–18. https://doi.org/10.35196/rfm.2003.1.11

Battal, P., Erez, M. E., Turker, M., & Berber, I. (2008). Molecular and physiological changes in maize (Zea mays) induced by exogenous NAA, ABA and MeJa during cold stress. Annales Botanici Fennici, 45(3), 173–185. https://doi.org/10.5735/085.045.0302

Chacón Rubio, M. J. (2018). Pruebas de vigor en semillas de maíz (Zea mays L.) [Tesis de Licenciatura, Universidad Nacional Agraria La Molina]. Repositorio Institucional de la Universidad Nacional Agraria La Molina. https://repositorio.lamolina.edu.pe/handle/20.500.12996/3468

Dayal, A., Rangare, N. R., Kumar, A., & Kumari, M. (2014). Effect of physiological maturity on seed quality of maize (Zea mays L.). Forage Research, 40(1), 1–6. http://forageresearch.in/wp-content/uploads/2014/06/1-6.pdf

de Fátima Ferreira, V. , Oliveira, J. A., Ferreira, T. F., Vilela Reis, L., de Andrade, V., & Costa Neto, J. (2013). Quality of maize seeds harvested and husked at high moisture levels. Journal of Seed Science, 35(2), 276–283. http://doi.org/10.1590/S2317-15372013000300001

Feng, L., Zhu, S., Zhang, C., Bao, Y., Feng, X., & He, Y. (2018). Identification of maize kernel vigor under different accelerated aging times using hyperspectral imaging. Molecules, 23(12), Article 3078. https://doi.org/10.3390/molecules23123078

Goggi, A. S., Curry, D., & Daniels, J. (2009). Cold test and saturated cold test reliability for testing carryover corn seed treated with seed-applied insecticides. Seed Technology, 31(1), 7–20. https://www.jstor.org/stable/23433502

Hussein, H. J., Shaheed, A. I., & Yasser, O. M. (2012). Effect of accelerated aging on vigor of local maize seeds in term of electrical conductivity and relative growth rate (RGR). Iraqi Journal of Science, 53(2), 285–291. https://www.iasj.net/iasj/download/a2b570e7394691d0

Ilbi, H., Kavak, S., & Eser, B. (2009). Cool germination test can be an alternative vigour test for maize. Seed Science and Technology, 37(2), 516–519. http://doi.org/10.15258/sst.2009.37.2.29

International Seed Testing Association. (2021a). Determination of moisture content. In International rules for seed testing. (2021 ed., pp. i9-12-20). International Seed Testing Association. https://bit.ly/3NtAPSi

International Seed Testing Association. (2021b). The germination test. In International rules for seed testing. (2021 ed., pp. i5-56-64). International Seed Testing Association. https://bit.ly/3NtAPSi

Jacob Junior, E. A., Marcia Mertz, L., Henning, F. A., Teichert Peske, S., Amaral Villela, F., & Baudet Labbé, L. M. (2014). Ideal seeds harvest moment of different maize hybrids. Ciência Rural, 44(2), 253–260. http://doi.org/10.1590/S0103-84782014000200010

Mancera, R. A. (2014). Determinación de la madurez fisiológica en semilla de maíz (Zea mays L.) mediante ganancia de peso seco y métodos alternos. Agro Productividad, 7(1), 50–57. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/504

McDonough, C. M., Floyd, C. D., Waniska, R. D., & Rooney, L. W. (2004). Effect of accelerated aging on maize, sorghum, and sorghum meal. Journal of Cereal Science, 39(3), 351–361. https://doi.org/10.1016/j.jcs.2004.01.001

Molina Moreno, J. C., González Hernández, V. A., Carballo Carballo, A., Livera Muñoz, M., Castillo González, F., & Ortega Delgado, M. L. (2003). Cambios en la calidad fisiológica y su asociación con la madurez de la semilla de maíz durante su formación. Revista Fitotecnia Mexicana, 26(4), 271–277. https://revistafitotecniamexicana.org/documentos/26-4/8a.pdf

Núñez Hernández, G., Faz Contreras, R., González Castañeda, F., & Peña Ramos, A. (2005). Madurez de híbridos de maíz a la cosecha para mejorar la producción y calidad del forraje. Técnica Pecuaria en México, 43(1), 69–78. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1391

Nuño, R. V., López, H. E. F., Villanueva, A. C., & Ruezga, M. D. L. Á. (2013). Determinación del vigor en semillas de maíz mediante la prueba de envejecimiento acelerado por el método ger-box. En J. A. L. Rangel, J. C. P. Raya, F. O. Cervantes, C. L. M. Aguirre, J. G. P. Ramírez, M. E. Mendoza (Eds.), 1er Congreso Nacional de Ciencia y Tecnología Agropecuaria (pp. 68–71). Sociedad Mexicana de Ciencia y Tecnología Agropecuaria.

Pichardo González, J. M., Ayala Garay O. J., González Hernández, V. A., Flores Ortíz, C. M., Carrillo Salazar, J. A., Peña Lomeli, A., Robledo Paz, A., & García de los Santos, G. (2014). Calidad fisiológica, ácidos grasos y respiración en semillas de tomate de cáscara deterioradas artificialmente. Revista Fitotecnia Mexicana, 33(3), 231–238. https://revistafitotecniamexicana.org/documentos/33-3/6r.pdf

Sakthivel, S., Renugadvi, J., Raja, K., & Swarnapriya, R. (2020). Effect of maturity stages on seed quality in winged bean [Psophocarpus tetragonolobus (L.) DC.] – a multipurpose legume. Madras Agriculture Journal, 107(4–6), 125–130. http://doi.org/10.29321/MAJ.2020.000356

Sulewska, H., Smiatacz, K., Szymanska, G., Panasiewicz, K., Bandurska, H., & Glowicka-Woloszyn, R. (2014). Seed size effect on yield quantity and quality of maize (Zea mays L.) cultivated in South East Baltic region. Zemdisbyste-Agriculture, 101(1), 35–40. http://www.zemdirbyste-agriculture.lt/wp-content/uploads/2014/03/101_1_str5.pdf

Tabakovic, M., Simic, M., Stanisavljevic, R., Milivojevic, M., Secanski, M., & Postic, D. (2020). Effects of shape and size of hybrid maize seed on germination and vigour of different genotypes. Chilen Journal of Agricultural Research, 80(3), 381–392. https://oes.chileanjar.cl/files/V80i3Y2020id4726.pdf

Tang, S. D., TeKrony, D. M., Collins, M., & McKenna, C. (2000). Determination of high seed moisture in maize. Seed Technology, 22(1), 43–55. https://www.jstor.org/stable/45133810

Vieira, R. D., Minohara, L., De Carvahlo, N. M., & Bergamaschi, M. C. M. (1995). Relationship of black layer and milk line development on maize seed maturity. Science Agriculture of Piracicaba, 52(1), 142–147. https://doi.org/10.1590/S0103-90161995000100023

Published

2023-07-11

How to Cite

Estrada-Urbina, J., Cantú-López, E., Molina-Moreno, J. C., & Estrada-Gómez, J. A. (2023). Physiological maturity in maize (Zea mays L.) seeds through morphological markers and moisture content. Agronomía Mesoamericana, 34(3), 53269. https://doi.org/10.15517/am.2023.53269