Strawberry (Fragaria ananassa) seedlings formation under different intensities of violet, blue and red LED light
DOI:
https://doi.org/10.15517/am.2024.54103Keywords:
agricultural research, chlorophyll, seedlings, seedsAbstract
Introduction. Seedlings formation under controlled conditions is crucial for cultivating species like strawberry. With LED artificial lighting technology allowing greater control over light, variations in components such as wavelength and intensity can be manipulated to generate seedlings with different characteristics. However, there is a need to generate information for the development of precise and efficient light control practices. Objective. The evaluate strawberry seedling formation under different intensities of violet, blue, and red LED light. Material and methods. The study was conducted in 2020 at the Plant Genetics Laboratory of the Department of Agronomy at the Universidad de Guanajuato, Guanajuato, Mexico. Seeds from San Andreas variety fruits were collected, and seedlings were grown under violet, blue, and red LED light at high, medium, and low intensities. Color determinations of cotyledon area, Chroma saturation index, and Hue angle were performed. Additionally, physio-technical, chemical, and antioxidant activity variables were measured. Results. The most suitable treatments were high and medium intensity violet light, as well as high intensity blue light, with germination range exceeding 60 %. Seedlings did not elongate or thin out and exhibited the largest cotyledons areas and chlorophyll concentrations. Furthermore, these light treatments consumed, on average, 31.2 % less electrical energy. Conclusions. In addition to white light, the most suitable treatments for strawberry seedlings formation were high and medium intensity violet light, as well as high intensity blue light. It is suggested to evaluate violet and blue light treatments in other cultivars to confirm their positive effect on strawberry seedlings. Red light limited germination and showing higher antioxidant activity.
Downloads
References
AbdElgader, A., Aiemla-Or, S., Wongs-Aree, C., Jitareerat, P., & Uthairatanakij, A. (2015). Effect of LED lighting on the quality of radish sprout. Agricultural Science Journal, 46(3), 888–891.
Ashrafuzzaman, M., Faisal, S. M., Yadav, D., Khanam, D., & Raihan, F. (2013). Micropropagation of strawberry (Fragaria ananassa) through runner culture. Bangladesh Journal of Agricultural Research, 38(3), 467–472. https://doi.org/10.3329/bjar.v38i3.16973
Banerjee, A., & Roychoudhury, A. (2016). Plant responses to light stress: oxidative damages, photoprotection, and role of phytohormones. In G. Jalal Ahammed, & J. -Q. Yu (Eds.), Plant hormones under challenging environmental factors (pp. 181–213). Springer. https://doi.org/10.1007/978-94-017-7758-2_8
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
Casierra-Posada, F., Peña-Olmos, J. E., & Ulrichs, C. (2011). Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: Implicaciones agronómicas. Revista U.D.C.A. Actualidad & Divulgación Científica, 14(2), 43–53. https://doi.org/10.31910/rudca.v14.n2.2011.774
Çayan, S., Sarikamiş, G., Yüksel Özmen, C., Kibar, U., Özden, E., & Ergül, A. (2021). The influence of exogenous gibberellic acid (GA3) and 24-epibrassinolide (24-EpiBL) on seed germination and the expression of genes involved in GA and BR synthesis/signalling in pepper (Capsicum annuum L.). Acta Scientiarum Polonorum-Hortorum Cultus, 20(5), 15–23. https://doi.org/10.24326/asphc.2021.5.2
Choi, H. G., Moon, B. Y., & Kang, N. J. (2016). Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Frontiers in Plant Science, 7, Article 1607. https://doi.org/10.3389/fpls.2016.01607
Costa Galvão, V., & Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34, 46–53. https://doi.org/10.1016/j.conb.2015.01.013
Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., & Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
Dudek, G., Strzelewicz, A., Krasowska, M., Rybak, A., & Turczyn, R. (2014). A spectrophotometric method for plant pigments determination and herbs classification. Chemical Papers, 68(5), 579–583. https://doi.org/10.2478/s11696-013-0502-x
Garcia-Noguera, J., Oliveira, F. I. P., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2014). Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries. Journal of Food Science and Technology, 51, 2222–2227. https://doi.org/10.1007/s13197-012-0724-x
Hidaka, K., Okamoto, A., Araki, T., Miyoshi, Y., Dan, K., Imamura, H., Kitano, M., Sameshima, K., & Okimura, M. (2014). Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology, 52(2), 63–71. https://doi.org/10.2525/ecb.52.63
Hinojosa-Dávalos, J., Cardona-López, M. A., Gutiérrez-Lomelí, M., Barrera-Rodríguez, A., & Robles-García, M. Á. (2019). Identificación del perfil fitoquímico y efecto del estrés lumínico sobre la capacidad antioxidante del germinado de brócoli en un dispositivo germinador rotatorio tipo tambor. Biotecnia, 21(3), 67–75. https://doi.org/10.18633/biotecnia.v21i3.1013
Huang, L., Xiao, Y., Ran, J., Wei, L., Li, Z., Li, Y., Zhang, X., Liao, L., Wang, D., Zhao, X., Xiao, Q., & Guo, Y. (2020). Drought tolerance of faba bean (Vicia faba L.) can be improved by specific LED light wavelengths. Photosynthetica, 58(4), 1040–1052. https://ps.ueb.cas.cz/artkey/phs-202004-0016_drought-tolerance-of-faba-bean-vicia-faba-l-can-be-improved-by-specific-led-light-wavelengths.php
Huché-Thélier, L., Crespel, L., Le Gourrierec, J., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
Ito, Y., Maruo, T., Ishikawa, M., & Shinohara, Y. (2011). Effects of scarification with sulfuric acid and matric priming on seed germination of seed propagation type of F1 hybrid strawberry (Fragaria× ananassa Duch.). Journal of the Japanese Society for Horticultural Science, 80(1), 32–37. https://doi.org/10.2503/jjshs1.80.32
Izzo, L. G., Mele, B. H., Vitale, L., Vitale, E., & Arena, C. (2020). The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environmental and Experimental Botany, 179, Article 104195. https://doi.org/10.1016/j.envexpbot.2020.104195
Jacobsen, J. V., Barrero, J. M., Hughes, T., Julkowska, M., Taylor, J. M., Xu, Q., & Gubler, F. (2013). Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta, 238(1), 121–138. https://doi.org/10.1007/s00425-013-1878-0
Kang, D. I., Hu, J., Li, Y., & Ryong Jeong, B. (2020). Growth, productivity, and quality of strawberry as affected by propagation method and cultivation system. Protected Horticulture and Plant Factory, 29(4), 326–336. https://doi.org/10.12791/KSBEC.2020.29.4.326
Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science Technology, 25(4), 726–732. https://doi.org/10.1590/S0101-20612005000400016
Kusnetsov, V. V., Doroshenko, A. S., Kudryakova, N. V., & Danilova, M. N. (2020). Role of Phytohormones and Light in De-etiolation. Russian Journal of Plant Physiology, 67, 971–984. https://doi.org/10.1134/S1021443720060102
León, A. P., Viña, S. Z., Frezza, D., Chaves, A., & Chiesa, A. (2007). Estimation of Chlorophyll Contents by Correlations between SPAD-502 Meter and Chroma Meter in Butterhead Lettuce. Communications in Soil Science and Plant Analysis, 38(19–20), 2877–2885. https://doi.org/10.1080/00103620701663115
Liu, Y., Gui, Z., & Liu, J. (2022). Research progress of light wavelength conversion materials and their applications in functional agricultural films. Polymers, 14(5), Article 851. https://doi.org/10.3390/polym14050851
Manivannan, A., Soundararajan, P., Gyeong Park, Y., Wei, H., Hoon Kim, S., & Ryong Jeong, B. (2017). Blue and red light-emitting diodes improve the growth and physiology of in vitro-grown carnations ‘Green Beauty’ and ‘Purple Beauty’. Horticulture, Environment, and Biotechnology, 58, 12–20. https://doi.org/10.1007/s13580-017-0051-2
Martínez-Cruz, O., & Paredes-López, O. (2014). Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. Journal of Chromatography A, 1346, 43–48. https://doi.org/10.1016/j.chroma.2014.04.007
Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., & Jiang, G. (2016). Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria× ananassa) fruit. Food Chemistry, 207, 93–100. https://doi.org/10.1016/j.foodchem.2016.02.077
Mireles Arriaga, A. I., Espinosa Granados, C. E., Montero Tavera, V., Maki Díaz, G., Hernández Ruiz, J., & Ruíz Nieto, J. E. (2020). Antioxidant response of lettuce plants to four wavelengths of LED visible light. Acta Physiologiae Plantarum, 42, Article 172. https://doi.org/10.1007/s11738-020-03161-6
Misu, H., Mori, M., Okumura, S., Kanazawa, S. -I., Ikeguchi, N., & Nakai, R. (2018). High-quality tomato seedling production system using artificial light. Sei Technical Review, 86, 119–124. https://global-sei.com/technology/tr/bn86/pdf/86-23.pdf
Naznin, M. T., Lefsrud, M., Gravel, V., & Hao, X. (2016). Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Horticulturae, 1134, 125–130. https://doi.org/10.17660/ActaHortic.2016.1134.17
Olle, M., & Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22(2), 223–234. https://doi.org/10.23986/afsci.7897
Paniagua-Pardo, G., Hernández-Aguilar, C., Rico-Martínez, F., Domínguez-Pacheco, F. A., Martínez-Ortiz, E., & Martínez-González, C. L. (2015). Effect of high intensity LED light on the germination and growth of broccoli seedlings (Brassica oleracea L.). Polibotánica, 40, 199–212. https://www.polibotanica.mx/index.php/polibotanica/article/view/399
Porras Mechán, Y. C., Pedreros Benavides, M. C., Reyes Ardila, W. L., & Balaguera-López, H. E. (2020). Light effect on germination of champa (Campomanesia lineatifolia R. & P.) seeds. Revista Ciencia y Agricultura, 17(2), 23–31. https://doi.org/10.19053/01228420.v17.n2.2020.10979
Samuolienė, G., Brazaitytė, A., Urbonavičiūtė, A., Šabajevienė, G., & Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97(2), 99–104. http://zemdirbyste-agriculture.lt/97(2)tomas/97_2_tomas_str11.pdf
Servicio de Información Agroalimentaria y Pesquera. (2021). Anuario estadístico de la producción agrícola. Resumen por cultivo. https://nube.siap.gob.mx/cierreagricola/
Simlat, M., Ślęzak, P., Moś, M., Warchoł, M., Skrzypek, E., & Ptak, A. (2016). The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Scientia Horticulturae, 211, 295–304. https://doi.org/10.1016/j.scienta.2016.09.009
Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. (2015). LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, 139–147. https://doi.org/10.1016/j.rser.2015.04.117
Spaninks, K., van Lieshout, J., van Ieperen, W., & Offringa, R. (2020). Regulation of early plant development by red and blue light: A comparative analysis between Arabidopsis thaliana and Solanum lycopersicum. Frontiers in Plant Science, 11, Article 599982. https://doi.org/10.3389%2Ffpls.2020.599982
Taulavuori, K., Pyysalo, A., Taulavuori, E., & Julkunen-Tiitto, R. (2018). Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environmental and Experimental Botany, 150, 183–187. https://doi.org/10.1016/j.envexpbot.2018.03.016
Tewolde, F. T., Lu, N., Shiina, K., Maruo, T., Takagaki, M., Kozai, T., & Yamori, W. (2016). Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Frontiers in Plant Science, 7, Article 448. https://doi.org/10.3389/fpls.2016.00448
Tripathi, S., Hoang, Q. T. N., Han, Y. -J., & Kim, J. -I. (2019). Regulation of photomorphogenic development by plant phytochromes. International Journal of Molecular Sciences, 20(24), Article 6165. https://doi.org/10.3390/ijms20246165
Tsuchida-Mayama, T., Sakai, T., Hanada, A., Uehara, Y., Asami, T., & Yamaguchi, S. (2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. The Plant Journal, 62(4), 653–662. https://doi.org/10.1111/j.1365-313X.2010.04180.x
Yoshida, H., Mizuta, D., Fukuda, N., Hikosaka, S., & Goto, E. (2016). Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnology, 33(4), 267–276. https://doi.org/10.5511/plantbiotechnology.16.0216a
Wang, Y., Yu, Y., Liu, W., Ren, L., & Ge, G. (2018). Exploration of highly efficient blue–violet light conversion agents for an agricultural film based on structure optimization of triphenylacrylonitrile. Journal of Agricultural and Food Chemistry, 66(50), 13295–13302. https://doi.org/10.1021/acs.jafc.8b05453
Wu, F., Guan, Z., Arana-Coronado, J. J., & Garcia-Nazariega, M. (2018, February 1). An overview of strawberry production in Mexico. University of Florida. https://edis.ifas.ufl.edu/publication/FE1014
Zhang, T., & Folta, K. M. (2012). Green light signaling and adaptive response. Plant Signal & Behavior, 7(1), 75–78. https://doi.org/10.4161/psb.7.1.18635
Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., Lou, Y., Sun, B., Wang, X., & Tang, H. (2018). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria× ananassa). Molecules, 23(4), Article 820. https://doi.org/10.3390/molecules23040820
Zhang, Y., & Xie, J. (2022). The effect of red and violet light emitting diode (LED) treatments on the postharvest quality and biodiversity of fresh-cut pakchoi (Brassica rapa L. Chinensis). Food Science and Technology International, 28(4), 297–308. https://doi.org/10.1177/10820132211018892
Zhao, Q. -P., Zhu, J. -D., Li, N. -N., Wang, X. -N., Zhao, X., & Zhang, X. (2020). Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. Journal of Integrative Plant Biology, 62(5), 614–630. https://doi.org/10.1111/jipb.12813
Zheng, J., He, D., & Ji, F. (2019). Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. International Journal of Agricultural and Biological Engineering, 12(6), 26–31. https://doi.org/10.25165/j.ijabe.20191206.5265
Zheng, J., Ji, F., He, D., & Niu, G. (2019). Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a LED plant factory. Agronomy, 9(12), Article 875. https://doi.org/10.3390/agronomy9120875
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jorge Eric Ruiz Nieto, Ana Isabel Mireles Arriaga, Jesús Hernández Ruiz, María Isabel Laguna Estrada, Adolfo Rafael López Núñez, José Luis Zárate-Castrejón
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).