Formación de plántulas de fresa (Fragaria ananassa) bajo diferentes intensidades de luz LED violeta, azul y roja

Autores/as

DOI:

https://doi.org/10.15517/am.2024.54103

Palabras clave:

investigación agrícola, clorofila, plántulas, semillas

Resumen

Introducción. La formación de plántulas en condiciones controladas es fundamental para cultivar especies como la fresa. Dado que la tecnología de iluminación artificial LED ha permitido un mayor control de la luz, la variación de componentes como la longitud de onda y la intensidad pueden ser manipulados para generar plántulas con diferentes características. Sin embargo, es necesario generar información para el desarrollo de prácticas precisas y eficientes en el control de la luz. Objetivo. Evaluar la formación de plántulas de fresa en diferentes intensidades de luz LED violeta, azul y roja. Materiales y métodos. El estudio se realizó durante 2020 en el Laboratorio de Genética Vegetal del Departamento de Agronomía de la Universidad de Guanajuato, Guanajuato, México. Se recuperaron semillas de frutos de la variedad San Andreas y se sembraron plántulas en luz LED violeta, azul y roja a intensidades alta, media y baja. Se realizaron determinaciones de color del área del cotiledón, índice de saturación de color y ángulo Hue. Además, se midieron variables fisiotécnicas, químicas y actividad antioxidante. Resultados. Los tratamientos más adecuados fueron luz violeta de intensidades altas y medias; así como luz azul de alta intensidad, debido a que el porcentaje de germinación superó el 60 %. Las plántulas no se alargaron ni adelgazaron, presentaron las mayores áreas de cotiledones y concentraciones de clorofila. Además, estos tratamientos de luz consumieron en promedio 31,2 % menos energía eléctrica. Conclusiones. Además de la luz blanca, los tratamientos más adecuados para la formación de plántulas de fresa fueron la luz violeta a alta y media intensidad, así como la luz azul a alta intensidad. Se sugiere evaluar los tratamientos de luz violeta y azul en otros cultivares para confirmar el efecto positivo en las plántulas de fresa. La luz roja limitó la germinación y mostró mayor actividad antioxidante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AbdElgader, A., Aiemla-Or, S., Wongs-Aree, C., Jitareerat, P., & Uthairatanakij, A. (2015). Effect of LED lighting on the quality of radish sprout. Agricultural Science Journal, 46(3), 888–891.

Ashrafuzzaman, M., Faisal, S. M., Yadav, D., Khanam, D., & Raihan, F. (2013). Micropropagation of strawberry (Fragaria ananassa) through runner culture. Bangladesh Journal of Agricultural Research, 38(3), 467–472. https://doi.org/10.3329/bjar.v38i3.16973

Banerjee, A., & Roychoudhury, A. (2016). Plant responses to light stress: oxidative damages, photoprotection, and role of phytohormones. In G. Jalal Ahammed, & J. -Q. Yu (Eds.), Plant hormones under challenging environmental factors (pp. 181–213). Springer. https://doi.org/10.1007/978-94-017-7758-2_8

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060

Casierra-Posada, F., Peña-Olmos, J. E., & Ulrichs, C. (2011). Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: Implicaciones agronómicas. Revista U.D.C.A. Actualidad & Divulgación Científica, 14(2), 43–53. https://doi.org/10.31910/rudca.v14.n2.2011.774

Çayan, S., Sarikamiş, G., Yüksel Özmen, C., Kibar, U., Özden, E., & Ergül, A. (2021). The influence of exogenous gibberellic acid (GA3) and 24-epibrassinolide (24-EpiBL) on seed germination and the expression of genes involved in GA and BR synthesis/signalling in pepper (Capsicum annuum L.). Acta Scientiarum Polonorum-Hortorum Cultus, 20(5), 15–23. https://doi.org/10.24326/asphc.2021.5.2

Choi, H. G., Moon, B. Y., & Kang, N. J. (2016). Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Frontiers in Plant Science, 7, Article 1607. https://doi.org/10.3389/fpls.2016.01607

Costa Galvão, V., & Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34, 46–53. https://doi.org/10.1016/j.conb.2015.01.013

Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., & Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010

Dudek, G., Strzelewicz, A., Krasowska, M., Rybak, A., & Turczyn, R. (2014). A spectrophotometric method for plant pigments determination and herbs classification. Chemical Papers, 68(5), 579–583. https://doi.org/10.2478/s11696-013-0502-x

Garcia-Noguera, J., Oliveira, F. I. P., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2014). Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries. Journal of Food Science and Technology, 51, 2222–2227. https://doi.org/10.1007/s13197-012-0724-x

Hidaka, K., Okamoto, A., Araki, T., Miyoshi, Y., Dan, K., Imamura, H., Kitano, M., Sameshima, K., & Okimura, M. (2014). Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology, 52(2), 63–71. https://doi.org/10.2525/ecb.52.63

Hinojosa-Dávalos, J., Cardona-López, M. A., Gutiérrez-Lomelí, M., Barrera-Rodríguez, A., & Robles-García, M. Á. (2019). Identificación del perfil fitoquímico y efecto del estrés lumínico sobre la capacidad antioxidante del germinado de brócoli en un dispositivo germinador rotatorio tipo tambor. Biotecnia, 21(3), 67–75. https://doi.org/10.18633/biotecnia.v21i3.1013

Huang, L., Xiao, Y., Ran, J., Wei, L., Li, Z., Li, Y., Zhang, X., Liao, L., Wang, D., Zhao, X., Xiao, Q., & Guo, Y. (2020). Drought tolerance of faba bean (Vicia faba L.) can be improved by specific LED light wavelengths. Photosynthetica, 58(4), 1040–1052. https://ps.ueb.cas.cz/artkey/phs-202004-0016_drought-tolerance-of-faba-bean-vicia-faba-l-can-be-improved-by-specific-led-light-wavelengths.php

Huché-Thélier, L., Crespel, L., Le Gourrierec, J., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009

Ito, Y., Maruo, T., Ishikawa, M., & Shinohara, Y. (2011). Effects of scarification with sulfuric acid and matric priming on seed germination of seed propagation type of F1 hybrid strawberry (Fragaria× ananassa Duch.). Journal of the Japanese Society for Horticultural Science, 80(1), 32–37. https://doi.org/10.2503/jjshs1.80.32

Izzo, L. G., Mele, B. H., Vitale, L., Vitale, E., & Arena, C. (2020). The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environmental and Experimental Botany, 179, Article 104195. https://doi.org/10.1016/j.envexpbot.2020.104195

Jacobsen, J. V., Barrero, J. M., Hughes, T., Julkowska, M., Taylor, J. M., Xu, Q., & Gubler, F. (2013). Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta, 238(1), 121–138. https://doi.org/10.1007/s00425-013-1878-0

Kang, D. I., Hu, J., Li, Y., & Ryong Jeong, B. (2020). Growth, productivity, and quality of strawberry as affected by propagation method and cultivation system. Protected Horticulture and Plant Factory, 29(4), 326–336. https://doi.org/10.12791/KSBEC.2020.29.4.326

Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science Technology, 25(4), 726–732. https://doi.org/10.1590/S0101-20612005000400016

Kusnetsov, V. V., Doroshenko, A. S., Kudryakova, N. V., & Danilova, M. N. (2020). Role of Phytohormones and Light in De-etiolation. Russian Journal of Plant Physiology, 67, 971–984. https://doi.org/10.1134/S1021443720060102

León, A. P., Viña, S. Z., Frezza, D., Chaves, A., & Chiesa, A. (2007). Estimation of Chlorophyll Contents by Correlations between SPAD-502 Meter and Chroma Meter in Butterhead Lettuce. Communications in Soil Science and Plant Analysis, 38(19–20), 2877–2885. https://doi.org/10.1080/00103620701663115

Liu, Y., Gui, Z., & Liu, J. (2022). Research progress of light wavelength conversion materials and their applications in functional agricultural films. Polymers, 14(5), Article 851. https://doi.org/10.3390/polym14050851

Manivannan, A., Soundararajan, P., Gyeong Park, Y., Wei, H., Hoon Kim, S., & Ryong Jeong, B. (2017). Blue and red light-emitting diodes improve the growth and physiology of in vitro-grown carnations ‘Green Beauty’ and ‘Purple Beauty’. Horticulture, Environment, and Biotechnology, 58, 12–20. https://doi.org/10.1007/s13580-017-0051-2

Martínez-Cruz, O., & Paredes-López, O. (2014). Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. Journal of Chromatography A, 1346, 43–48. https://doi.org/10.1016/j.chroma.2014.04.007

Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., & Jiang, G. (2016). Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria× ananassa) fruit. Food Chemistry, 207, 93–100. https://doi.org/10.1016/j.foodchem.2016.02.077

Mireles Arriaga, A. I., Espinosa Granados, C. E., Montero Tavera, V., Maki Díaz, G., Hernández Ruiz, J., & Ruíz Nieto, J. E. (2020). Antioxidant response of lettuce plants to four wavelengths of LED visible light. Acta Physiologiae Plantarum, 42, Article 172. https://doi.org/10.1007/s11738-020-03161-6

Misu, H., Mori, M., Okumura, S., Kanazawa, S. -I., Ikeguchi, N., & Nakai, R. (2018). High-quality tomato seedling production system using artificial light. Sei Technical Review, 86, 119–124. https://global-sei.com/technology/tr/bn86/pdf/86-23.pdf

Naznin, M. T., Lefsrud, M., Gravel, V., & Hao, X. (2016). Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Horticulturae, 1134, 125–130. https://doi.org/10.17660/ActaHortic.2016.1134.17

Olle, M., & Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22(2), 223–234. https://doi.org/10.23986/afsci.7897

Paniagua-Pardo, G., Hernández-Aguilar, C., Rico-Martínez, F., Domínguez-Pacheco, F. A., Martínez-Ortiz, E., & Martínez-González, C. L. (2015). Effect of high intensity LED light on the germination and growth of broccoli seedlings (Brassica oleracea L.). Polibotánica, 40, 199–212. https://www.polibotanica.mx/index.php/polibotanica/article/view/399

Porras Mechán, Y. C., Pedreros Benavides, M. C., Reyes Ardila, W. L., & Balaguera-López, H. E. (2020). Light effect on germination of champa (Campomanesia lineatifolia R. & P.) seeds. Revista Ciencia y Agricultura, 17(2), 23–31. https://doi.org/10.19053/01228420.v17.n2.2020.10979

Samuolienė, G., Brazaitytė, A., Urbonavičiūtė, A., Šabajevienė, G., & Duchovskis, P. (2010). The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97(2), 99–104. http://zemdirbyste-agriculture.lt/97(2)tomas/97_2_tomas_str11.pdf

Servicio de Información Agroalimentaria y Pesquera. (2021). Anuario estadístico de la producción agrícola. Resumen por cultivo. https://nube.siap.gob.mx/cierreagricola/

Simlat, M., Ślęzak, P., Moś, M., Warchoł, M., Skrzypek, E., & Ptak, A. (2016). The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Scientia Horticulturae, 211, 295–304. https://doi.org/10.1016/j.scienta.2016.09.009

Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. (2015). LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, 139–147. https://doi.org/10.1016/j.rser.2015.04.117

Spaninks, K., van Lieshout, J., van Ieperen, W., & Offringa, R. (2020). Regulation of early plant development by red and blue light: A comparative analysis between Arabidopsis thaliana and Solanum lycopersicum. Frontiers in Plant Science, 11, Article 599982. https://doi.org/10.3389%2Ffpls.2020.599982

Taulavuori, K., Pyysalo, A., Taulavuori, E., & Julkunen-Tiitto, R. (2018). Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environmental and Experimental Botany, 150, 183–187. https://doi.org/10.1016/j.envexpbot.2018.03.016

Tewolde, F. T., Lu, N., Shiina, K., Maruo, T., Takagaki, M., Kozai, T., & Yamori, W. (2016). Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Frontiers in Plant Science, 7, Article 448. https://doi.org/10.3389/fpls.2016.00448

Tripathi, S., Hoang, Q. T. N., Han, Y. -J., & Kim, J. -I. (2019). Regulation of photomorphogenic development by plant phytochromes. International Journal of Molecular Sciences, 20(24), Article 6165. https://doi.org/10.3390/ijms20246165

Tsuchida-Mayama, T., Sakai, T., Hanada, A., Uehara, Y., Asami, T., & Yamaguchi, S. (2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. The Plant Journal, 62(4), 653–662. https://doi.org/10.1111/j.1365-313X.2010.04180.x

Yoshida, H., Mizuta, D., Fukuda, N., Hikosaka, S., & Goto, E. (2016). Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnology, 33(4), 267–276. https://doi.org/10.5511/plantbiotechnology.16.0216a

Wang, Y., Yu, Y., Liu, W., Ren, L., & Ge, G. (2018). Exploration of highly efficient blue–violet light conversion agents for an agricultural film based on structure optimization of triphenylacrylonitrile. Journal of Agricultural and Food Chemistry, 66(50), 13295–13302. https://doi.org/10.1021/acs.jafc.8b05453

Wu, F., Guan, Z., Arana-Coronado, J. J., & Garcia-Nazariega, M. (2018, February 1). An overview of strawberry production in Mexico. University of Florida. https://edis.ifas.ufl.edu/publication/FE1014

Zhang, T., & Folta, K. M. (2012). Green light signaling and adaptive response. Plant Signal & Behavior, 7(1), 75–78. https://doi.org/10.4161/psb.7.1.18635

Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., Lou, Y., Sun, B., Wang, X., & Tang, H. (2018). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria× ananassa). Molecules, 23(4), Article 820. https://doi.org/10.3390/molecules23040820

Zhang, Y., & Xie, J. (2022). The effect of red and violet light emitting diode (LED) treatments on the postharvest quality and biodiversity of fresh-cut pakchoi (Brassica rapa L. Chinensis). Food Science and Technology International, 28(4), 297–308. https://doi.org/10.1177/10820132211018892

Zhao, Q. -P., Zhu, J. -D., Li, N. -N., Wang, X. -N., Zhao, X., & Zhang, X. (2020). Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. Journal of Integrative Plant Biology, 62(5), 614–630. https://doi.org/10.1111/jipb.12813

Zheng, J., He, D., & Ji, F. (2019). Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. International Journal of Agricultural and Biological Engineering, 12(6), 26–31. https://doi.org/10.25165/j.ijabe.20191206.5265

Zheng, J., Ji, F., He, D., & Niu, G. (2019). Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a LED plant factory. Agronomy, 9(12), Article 875. https://doi.org/10.3390/agronomy9120875

Publicado

2024-01-09

Cómo citar

Ruiz Nieto, J. E., Mireles Arriaga, A. I., Hernández Ruiz, J., Laguna Estrada, M. I., López Núñez, A. R., & Zárate-Castrejón, J. L. (2024). Formación de plántulas de fresa (Fragaria ananassa) bajo diferentes intensidades de luz LED violeta, azul y roja. Agronomía Mesoamericana, 35, 54103. https://doi.org/10.15517/am.2024.54103

Número

Sección

Notas Técnicas