Communication in symbiotic associations Mechanisms between arbuscular mycorrhizal fungi, plants and soil organisms

Authors

DOI:

https://doi.org/10.15517/am.2024.57100

Keywords:

quorum sensing, response induction, infochemicals, associated bacteria, molecular dialogue

Abstract

Introduction. Arbuscular mycorrhizal fungi (AMF), form close symbiotic associations with 90 % of plant species. They engage in a molecular dialogue using infochemical and nutrient molecules to regulate this mutualistic association. Objective. To gather information on the molecular mechanisms involved in the communication between AMF, their host plant and other soil organisms. Development. The symbiosis between mycorrhizal fungi and plants depends on specific signaling molecules that allow recognition, signaling and communication, in addition to physical contact between both organisms. The mechanisms of molecular communication and biological interactions between AMF with plants at different times of interaction are described, placing emphasis on the description of currently known regulatory genes, proteins, and target molecules. In addition, molecular interactions with other soil organisms are described. Conclusions. The mechanisms of molecular communication between mycorrhizal fungi and plants are complex and still present gaps in knowledge that must be filled to fully understand the ecological importance of AMF and the interactions with other edaphic organisms and thus achieve their use.

Downloads

Download data is not yet available.

References

Ahammed, G. J., & Hajiboland, R. (2024). Introduction to arbuscular mycorrhizal fungi and higher plant symbiosis: Characteristic features, functions, and applications. In G. J. Ahammed, & R. Hajiboland (Eds.), Arbuscular mycorrhizal fungi and higher plants: fundamentals and applications (pp. 1-17). Springer Nature. https://doi.org/10.1007/978-981-99-8220-2_1

Bago, B., Pfeffer, P., & Shachar-Hill, Y. (2000). Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant physiology, 124, 949-958. https://doi.org/10.1104/pp.124.3.949

Bonfante, P., & Perotto, S. (1995). Tansley Review No. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist, 130(1), 3-21. https://doi.org/10.1111/j.1469-8137.1995.tb01810.x

Boutafa, N. (2019). Interplant communication: The role of mycorrhizal networks concerning underground interactions [Degree Thesis, Ecole Polytechnique de l’Université de Tours]. Repository of the Université de Tours. http://memoires.scd.univ-tours.fr/EPU_DA/LOCAL/2019PFE_Nina_Boutafa.pdf

Boyno, G., & Demir, S. (2022). Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis, 86(2), 155-168. https://doi.org/10.1007/s13199-022-00837-0

Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas, S., Cruz-Ortega, R., Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas, S., & Cruz-Ortega, R. (2022). Las micorrizas como una herramienta para la restauración ecológica. Acta Botánica Mexicana, (129), Artículo e1932. https://doi.org/10.21829/abm129.2022.1932

Chaudhary, T., Gera, R., & Shukla, P. (2021). Emerging molecular tools for engineering phytomicrobiome. Indian Journal of Microbiology, 61(2), 116-124. https://doi.org/10.1007/s12088-020-00915-1

Choi, J., Lee, T., Cho, J., Servante, E. K., Pucker, B., Summers, W., Bowden, S., Rahimi, M., An, K., An, G., Bouwmeester, H. J., Wallington, E. J., Oldroyd, G., & Paszkowski, U. (2020). The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 11 Article 2114. https://doi.org/10.1038/s41467-020-16021-1

Cortez, M., Handy, D., Headlee, A., Montanez, C., Pryor, S., Cutshaw, K., Vanselow, K., Perez, A., Weissman, J., Ziegler, E., Wheeler, B., & Palmer, A. (2022). Quorum Sensing in the Rhizosphere. In B. A. Horwitz, & P. K. Mukherjee (Eds.), Microbial Cross-talk in the Rhizosphere (pp. 99-134). Springer Nature. https://doi.org/10.1007/978-981-16-9507-0_5

Dhalaria, R., Verma, R., Kumar, D., Upadhyay, N. K., Alomar, S., & Kuca, K. (2024). Impact assessment of beneficial mycorrhizal fungi on phytochemical constituents and nutrient uptake in Gomphrena globosa. Scientia Horticulturae, 325, 112646. https://doi.org/10.1016/j.scienta.2023.112646

Dhanker, R., Chaudhary, S., Kumari, A., Kumar, R., & Goyal, S. (2020). Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis. In A. Varma, S. Tripathi, & R. Prasad (Eds.), Plant Microbe Symbiosis (pp. 75-103). Springer International Publishing. https://doi.org/10.1007/978-3-030-36248-5_5

Ding, C., Zhao, Y., Zhang, Q., Lin, Y., Xue, R., Chen, C., Zeng, R., Chen, D., & Song, Y. (2022). Cadmium transfer between maize and soybean plants via common mycorrhizal networks. Ecotoxicology and Environmental Safety, 232, Article 113273. https://doi.org/10.1016/j.ecoenv.2022.113273

Fernández, I., Cosme, M., Stringlis, I. A., Yu, K., de Jonge, R., van Wees, SaskiaC. M., Pozo, M. J., Pieterse, C. M. J., & van der Heijden, M. G. A. (2019). Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytologist, 223(2), 867-881. https://doi.org/10.1111/nph.15798

Figueiredo, A. F., Boy, J., & Guggenberger, G. (2021). Common mycorrhizae network: A review of the theories and mechanisms behind underground interactions. Frontiers in Fungal Biology, 2, Article 735299 https://www.frontiersin.org/article/10.3389/ffunb.2021.735299

Gupta, S., Chaturvedi, P., & Kulkarni, M. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, Article 107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Hao, L., Zhang, Z., Hao, B., Diao, F., Zhang, J., Bao, Z., & Guo, W. (2021). Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212, Article 111996. https://doi.org/10.1016/j.ecoenv.2021.111996

Ho-Plágaro, T., & García, J. M. (2022). Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 23, Article 11. https://doi.org/10.3390/ijms23115960

Hull, R., Choi, J., & Paszkowski, U. (2021). Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Current Opinion in Plant Biology, 62, Article 102071. https://doi.org/10.1016/j.pbi.2021.102071

Kalamulla, R., Karunarathna, S. C., Tibpromma, S., Galappaththi, M. C. A., Suwannarach, N., Stephenson, S. L., Asad, S., Salem, Z. S., & Yapa, N. (2022). Arbuscular mycorrhizal fungi in sustainable agriculture. Sustainability, 14, Article 19. https://doi.org/10.3390/su141912250

Karst, J., Jones, M. D., & Hoeksema, J. D. (2023). Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nature Ecology & Evolution, 7(4), 501-511. https://doi.org/10.1038/s41559-023-01986-1

Kaur, J., Chavana, J., Soti, P., Racelis, A., & Kariyat, R. (2020). Arbuscular mycorrhizal fungi (AMF) influences growth and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii). Arthropod-Plant Interactions, 14(3), 301-315. https://doi.org/10.1007/s11829-020-09747-8

Knegt, B., Jansa, J., Franken, O., Engelmoer, D. J. P., Werner, G. D. A., Bücking, H., & Kiers, E. T. (2016). Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecology, 20, 233-240. https://doi.org/10.1016/j.funeco.2014.09.011

Kuyper, T. W., & Jansa, J. (2023). Arbuscular mycorrhiza: Advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant and Soil, 489(1), 41-88. https://doi.org/10.1007/s11104-023-06045-z

Lastovetsky, O. A., Krasnovsky, L. D., Qin, X., Gaspar, M. L., Gryganskyi, A. P., Huntemann, M., Clum, A., Pillay, M., Palaniappan, K., Varghese, N., Mikhailova, N., Stamatis, D., Reddy, T. B. K., Daum, C., Shapiro, N., Ivanova, N., Kyrpides, N., Woyke, T., & Pawlowska, T. E. (2020). Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism. mBio, 11(5), 1-19. https://doi.org/10.1128/mBio.02088-20

Lee Díaz, A. S., Minchev, Z., Raaijmakers, J. M., Pozo, M. J., & Garbeva, P. (2024). Impact of bacterial and fungal inoculants on the resident rhizosphere microbiome and the volatilome of tomato plants under leaf herbivory stress. FEMS Microbiology Ecology, 100(2), Article fiad160. https://doi.org/10.1093/femsec/fiad160

Liu, Z., Cheng, X.-F., Zou, Y.-N., Srivastava, A. K., Alqahtani, M. D., & Wu, Q.-S. (2024). Negotiating soil water deficit in mycorrhizal trifoliate orange plants: A gibberellin pathway. Environmental and Experimental Botany, 219, Article 105658. https://doi.org/10.1016/j.envexpbot.2024.105658

Liu, M., Wang, H., Lin, Z., Ke, J., Zhang, P., Zhang, F., Ru, D., Zhang, L., Xiao, Y., & Liu, X. (2024). Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: A meta-analysis and experimental study. New Phytologist, 241(3), 1308-1320. https://doi.org/10.1111/nph.19392

Marmolejo, L. O., Thompson, M. N., & Helms, A. M. (2021). Defense Suppression through Interplant Communication Depends on the Attacking Herbivore Species. Journal of Chemical Ecology, 47(12), 1049-1061. https://doi.org/10.1007/s10886-021-01314-6

Meng, Y., Davison, J., Clarke, J. T., Zobel, M., Gerz, M., Moora, M., Öpik, M., & Bueno, C. G. (2023). Environmental modulation of plant mycorrhizal traits in the global flora. Ecology Letters, 26(11), 1862-1876. https://doi.org/10.1111/ele.14309

Nadal, M., Sawers, R., Naseem, S., Bassin, B., Kulicke, C., Sharman, A., An, G., An, K., Ahern, K. R., Romag, A., Brutnell, T. P., Gutjahr, C., Geldner, N., Roux, C., Martinoia, E., Konopka, J. B., & Paszkowski, U. (2017). An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature plants, 3, Article 17073. https://doi.org/10.1038/nplants.2017.73

Nasslahsen, B., Prin, Y., Ferhout, H., Smouni, A., & Duponnois, R. (2022). Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Frontiers in Soil Science, 2, Article 979246. https://doi.org/10.3389/fsoil.2022.979246

Oelmüller, R. (2019). Interplant communication via hyphal networks. Plant Physiology Reports, 24(4), 463-473. https://doi.org/10.1007/s40502-019-00491-7

Rashad, Y., Aseel, D., Hammad, S., & Elkelish, A. (2020). Rhizophagus irregularis and Rhizoctonia solani differentially elicit systemic transcriptional expression of polyphenol biosynthetic pathways genes in sunflower. Biomolecules, 10(3), 379-399. https://doi.org/10.3390/biom10030379

Rashad, Y. M., Fekry, W. M. E., Sleem, M. M., & Elazab, N. T. (2021). Effects of mycorrhizal colonization on transcriptional expression of the responsive factor JERF3 and stress-responsive genes in banana plantlets in response to combined biotic and abiotic stresses. Frontiers in Plant Science, 12, Article 742628. https://doi.org/10.3389/fpls.2021.742628

Rillig, M., Lehmann, A., Lanfranco, L., Caruso, T., & Johnson, D. (2023). Re-defining common mycorrhizal and fungal networks. EcoEvoRxiv, Preprint https://doi.org/10.32942/X2831H

Salmeron-Santiago, I. A., Martínez-Trujillo, M., Valdez-Alarcón, J. J., Pedraza-Santos, M. E., Santoyo, G., López, P. A., Larsen, J., Pozo, M. J., & Chávez-Bárcenas, A. T. (2023). Carbohydrate and lipid balances in the positive plant phenotypic response to arbuscular mycorrhiza: Increase in sink strength. Physiologia Plantarum, 175(1), Article e13857. https://doi.org/10.1111/ppl.13857

Sangwan, S., & Prasanna, R. (2022). Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microbial Ecology, 84(1), 1-10. https://doi.org/10.1007/s00248-021-01831-7

Santoyo, G., Gamalero, E., & Glick, B. R. (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems, 5, Article 672881. https://doi.org/10.3389/fsufs.2021.672881

Saparrat, M. C., Ruscitti, M. F., & Arango, M. C. (Eds.). (2020). Micorrizas arbusculares: Biología y aplicaciones en el sector agro-forestal. Editorial de la Universidad Nacional de La Plata. https://doi.org/10.35537/10915/99599

Shi, J., Wang, X., & Wang, E. (2023). Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 74(1), 569-613. https://doi.org/10.1146/annurev-arplant-061722-090342

Ujvári, G., Turrini, A., Avio, L., & Agnolucci, M. (2021). Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 31(5), 527-544. https://doi.org/10.1007/s00572-021-01040-7

Venegas-Jaque, P., & Mestre, M. C. (2021). Hacia una fertilización sustentable: Los microorganismos del suelo son esenciales en los ecosistemas naturales. Desde la patagonia. Difundiendo saberes, 18(32), Article 32. https://revele.uncoma.edu.ar/index.php/desdelapatagonia/article/view/3640

Wang, F., & Feng, G. (2021). Arbuscular mycorrhizal fungi interactions in the rhizosphere. In V. V. S. R. Gupta & A. K. Sharma (Eds.), Rhizosphere biology: Interactions between microbes and plants (pp. 217-235). Springer. https://doi.org/10.1007/978-981-15-6125-2_11

Zhang, C., van der Heijden, M. G. A., Dodds, B. K., Nguyen, T. B., Spooren, J., Valzano-Held, A., Cosme, M., & Berendsen, R. L. (2024). A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 12(1), Article 13. https://doi.org/10.1186/s40168-023-01726-4

Zúñiga, A., Carrodeguas, A., & Solís, L. Y. (2023). Micorrizas y rhizobios: Un diálogo molecular con el huésped vegetal. Cultivos Tropicales, 43(2), Article e13. https://doi.org/10.1234/ct.v43i2.166

Published

2024-09-23

How to Cite

Watson-Guido, W. ., & Rivera-Méndez, W. (2024). Communication in symbiotic associations Mechanisms between arbuscular mycorrhizal fungi, plants and soil organisms. Agronomía Mesoamericana, 57100. https://doi.org/10.15517/am.2024.57100

Issue

Section

Literature Reviews