Comunicación en las asociaciones simbióticas: mecanismos entre hongos micorrícicos arbusculares, plantas y organismos edáficos

Autores/as

DOI:

https://doi.org/10.15517/am.2024.57100

Palabras clave:

quorum sensing, inducción de respuesta, infoquímicos, bacterias asociadas, diálogo molecular

Resumen

Introducción. Los hongos micorrícicos arbusculares (HMA), forman asociaciones simbióticas estrechas con el 90 % de las especies vegetales. Entablan un “diálogo” molecular mediante moléculas infoquímicas y de nutrientes para la regulación de esta asociación mutualista. Objetivo. Recopilar información sobre los mecanismos moleculares implicados en la comunicación entre los HMA, su planta hospedera y otros organismos edáficos. Desarrollo. La simbiosis entre los hongos micorrícicos y las plantas depende de moléculas señalizadoras específicas que permiten el reconocimiento, la señalización y la comunicación, además del contacto físico entre ambos organismos. Se describen los mecanismos de comunicación molecular y de las interacciones biológicas entre los HMA con las plantas en los diferentes tiempos de la interacción, con énfasis en la descripción de genes reguladores, proteínas y moléculas diana conocidas. Además, se describen interacciones moleculares con otros organismos edáficos. Conclusiones. Los mecanismos de comunicación molecular entre hongos micorrícicos y plantas son complejos y aún presentan vacíos de conocimiento que deben de ser superados para comprender a cabalidad la importancia ecológica de los HMA y de las interacciones con otros organismos edáficos y así lograr su aprovechamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahammed, G. J., & Hajiboland, R. (2024). Introduction to arbuscular mycorrhizal fungi and higher plant symbiosis: Characteristic features, functions, and applications. In G. J. Ahammed, & R. Hajiboland (Eds.), Arbuscular mycorrhizal fungi and higher plants: fundamentals and applications (pp. 1-17). Springer Nature. https://doi.org/10.1007/978-981-99-8220-2_1

Bago, B., Pfeffer, P., & Shachar-Hill, Y. (2000). Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant physiology, 124, 949-958. https://doi.org/10.1104/pp.124.3.949

Bonfante, P., & Perotto, S. (1995). Tansley Review No. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist, 130(1), 3-21. https://doi.org/10.1111/j.1469-8137.1995.tb01810.x

Boutafa, N. (2019). Interplant communication: The role of mycorrhizal networks concerning underground interactions [Degree Thesis, Ecole Polytechnique de l’Université de Tours]. Repository of the Université de Tours. http://memoires.scd.univ-tours.fr/EPU_DA/LOCAL/2019PFE_Nina_Boutafa.pdf

Boyno, G., & Demir, S. (2022). Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis, 86(2), 155-168. https://doi.org/10.1007/s13199-022-00837-0

Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas, S., Cruz-Ortega, R., Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas, S., & Cruz-Ortega, R. (2022). Las micorrizas como una herramienta para la restauración ecológica. Acta Botánica Mexicana, (129), Artículo e1932. https://doi.org/10.21829/abm129.2022.1932

Chaudhary, T., Gera, R., & Shukla, P. (2021). Emerging molecular tools for engineering phytomicrobiome. Indian Journal of Microbiology, 61(2), 116-124. https://doi.org/10.1007/s12088-020-00915-1

Choi, J., Lee, T., Cho, J., Servante, E. K., Pucker, B., Summers, W., Bowden, S., Rahimi, M., An, K., An, G., Bouwmeester, H. J., Wallington, E. J., Oldroyd, G., & Paszkowski, U. (2020). The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 11 Article 2114. https://doi.org/10.1038/s41467-020-16021-1

Cortez, M., Handy, D., Headlee, A., Montanez, C., Pryor, S., Cutshaw, K., Vanselow, K., Perez, A., Weissman, J., Ziegler, E., Wheeler, B., & Palmer, A. (2022). Quorum Sensing in the Rhizosphere. In B. A. Horwitz, & P. K. Mukherjee (Eds.), Microbial Cross-talk in the Rhizosphere (pp. 99-134). Springer Nature. https://doi.org/10.1007/978-981-16-9507-0_5

Dhalaria, R., Verma, R., Kumar, D., Upadhyay, N. K., Alomar, S., & Kuca, K. (2024). Impact assessment of beneficial mycorrhizal fungi on phytochemical constituents and nutrient uptake in Gomphrena globosa. Scientia Horticulturae, 325, 112646. https://doi.org/10.1016/j.scienta.2023.112646

Dhanker, R., Chaudhary, S., Kumari, A., Kumar, R., & Goyal, S. (2020). Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis. In A. Varma, S. Tripathi, & R. Prasad (Eds.), Plant Microbe Symbiosis (pp. 75-103). Springer International Publishing. https://doi.org/10.1007/978-3-030-36248-5_5

Ding, C., Zhao, Y., Zhang, Q., Lin, Y., Xue, R., Chen, C., Zeng, R., Chen, D., & Song, Y. (2022). Cadmium transfer between maize and soybean plants via common mycorrhizal networks. Ecotoxicology and Environmental Safety, 232, Article 113273. https://doi.org/10.1016/j.ecoenv.2022.113273

Fernández, I., Cosme, M., Stringlis, I. A., Yu, K., de Jonge, R., van Wees, SaskiaC. M., Pozo, M. J., Pieterse, C. M. J., & van der Heijden, M. G. A. (2019). Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytologist, 223(2), 867-881. https://doi.org/10.1111/nph.15798

Figueiredo, A. F., Boy, J., & Guggenberger, G. (2021). Common mycorrhizae network: A review of the theories and mechanisms behind underground interactions. Frontiers in Fungal Biology, 2, Article 735299 https://www.frontiersin.org/article/10.3389/ffunb.2021.735299

Gupta, S., Chaturvedi, P., & Kulkarni, M. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, Article 107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Hao, L., Zhang, Z., Hao, B., Diao, F., Zhang, J., Bao, Z., & Guo, W. (2021). Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212, Article 111996. https://doi.org/10.1016/j.ecoenv.2021.111996

Ho-Plágaro, T., & García, J. M. (2022). Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 23, Article 11. https://doi.org/10.3390/ijms23115960

Hull, R., Choi, J., & Paszkowski, U. (2021). Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Current Opinion in Plant Biology, 62, Article 102071. https://doi.org/10.1016/j.pbi.2021.102071

Kalamulla, R., Karunarathna, S. C., Tibpromma, S., Galappaththi, M. C. A., Suwannarach, N., Stephenson, S. L., Asad, S., Salem, Z. S., & Yapa, N. (2022). Arbuscular mycorrhizal fungi in sustainable agriculture. Sustainability, 14, Article 19. https://doi.org/10.3390/su141912250

Karst, J., Jones, M. D., & Hoeksema, J. D. (2023). Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nature Ecology & Evolution, 7(4), 501-511. https://doi.org/10.1038/s41559-023-01986-1

Kaur, J., Chavana, J., Soti, P., Racelis, A., & Kariyat, R. (2020). Arbuscular mycorrhizal fungi (AMF) influences growth and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii). Arthropod-Plant Interactions, 14(3), 301-315. https://doi.org/10.1007/s11829-020-09747-8

Knegt, B., Jansa, J., Franken, O., Engelmoer, D. J. P., Werner, G. D. A., Bücking, H., & Kiers, E. T. (2016). Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecology, 20, 233-240. https://doi.org/10.1016/j.funeco.2014.09.011

Kuyper, T. W., & Jansa, J. (2023). Arbuscular mycorrhiza: Advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant and Soil, 489(1), 41-88. https://doi.org/10.1007/s11104-023-06045-z

Lastovetsky, O. A., Krasnovsky, L. D., Qin, X., Gaspar, M. L., Gryganskyi, A. P., Huntemann, M., Clum, A., Pillay, M., Palaniappan, K., Varghese, N., Mikhailova, N., Stamatis, D., Reddy, T. B. K., Daum, C., Shapiro, N., Ivanova, N., Kyrpides, N., Woyke, T., & Pawlowska, T. E. (2020). Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism. mBio, 11(5), 1-19. https://doi.org/10.1128/mBio.02088-20

Lee Díaz, A. S., Minchev, Z., Raaijmakers, J. M., Pozo, M. J., & Garbeva, P. (2024). Impact of bacterial and fungal inoculants on the resident rhizosphere microbiome and the volatilome of tomato plants under leaf herbivory stress. FEMS Microbiology Ecology, 100(2), Article fiad160. https://doi.org/10.1093/femsec/fiad160

Liu, Z., Cheng, X.-F., Zou, Y.-N., Srivastava, A. K., Alqahtani, M. D., & Wu, Q.-S. (2024). Negotiating soil water deficit in mycorrhizal trifoliate orange plants: A gibberellin pathway. Environmental and Experimental Botany, 219, Article 105658. https://doi.org/10.1016/j.envexpbot.2024.105658

Liu, M., Wang, H., Lin, Z., Ke, J., Zhang, P., Zhang, F., Ru, D., Zhang, L., Xiao, Y., & Liu, X. (2024). Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: A meta-analysis and experimental study. New Phytologist, 241(3), 1308-1320. https://doi.org/10.1111/nph.19392

Marmolejo, L. O., Thompson, M. N., & Helms, A. M. (2021). Defense Suppression through Interplant Communication Depends on the Attacking Herbivore Species. Journal of Chemical Ecology, 47(12), 1049-1061. https://doi.org/10.1007/s10886-021-01314-6

Meng, Y., Davison, J., Clarke, J. T., Zobel, M., Gerz, M., Moora, M., Öpik, M., & Bueno, C. G. (2023). Environmental modulation of plant mycorrhizal traits in the global flora. Ecology Letters, 26(11), 1862-1876. https://doi.org/10.1111/ele.14309

Nadal, M., Sawers, R., Naseem, S., Bassin, B., Kulicke, C., Sharman, A., An, G., An, K., Ahern, K. R., Romag, A., Brutnell, T. P., Gutjahr, C., Geldner, N., Roux, C., Martinoia, E., Konopka, J. B., & Paszkowski, U. (2017). An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature plants, 3, Article 17073. https://doi.org/10.1038/nplants.2017.73

Nasslahsen, B., Prin, Y., Ferhout, H., Smouni, A., & Duponnois, R. (2022). Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Frontiers in Soil Science, 2, Article 979246. https://doi.org/10.3389/fsoil.2022.979246

Oelmüller, R. (2019). Interplant communication via hyphal networks. Plant Physiology Reports, 24(4), 463-473. https://doi.org/10.1007/s40502-019-00491-7

Rashad, Y., Aseel, D., Hammad, S., & Elkelish, A. (2020). Rhizophagus irregularis and Rhizoctonia solani differentially elicit systemic transcriptional expression of polyphenol biosynthetic pathways genes in sunflower. Biomolecules, 10(3), 379-399. https://doi.org/10.3390/biom10030379

Rashad, Y. M., Fekry, W. M. E., Sleem, M. M., & Elazab, N. T. (2021). Effects of mycorrhizal colonization on transcriptional expression of the responsive factor JERF3 and stress-responsive genes in banana plantlets in response to combined biotic and abiotic stresses. Frontiers in Plant Science, 12, Article 742628. https://doi.org/10.3389/fpls.2021.742628

Rillig, M., Lehmann, A., Lanfranco, L., Caruso, T., & Johnson, D. (2023). Re-defining common mycorrhizal and fungal networks. EcoEvoRxiv, Preprint https://doi.org/10.32942/X2831H

Salmeron-Santiago, I. A., Martínez-Trujillo, M., Valdez-Alarcón, J. J., Pedraza-Santos, M. E., Santoyo, G., López, P. A., Larsen, J., Pozo, M. J., & Chávez-Bárcenas, A. T. (2023). Carbohydrate and lipid balances in the positive plant phenotypic response to arbuscular mycorrhiza: Increase in sink strength. Physiologia Plantarum, 175(1), Article e13857. https://doi.org/10.1111/ppl.13857

Sangwan, S., & Prasanna, R. (2022). Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microbial Ecology, 84(1), 1-10. https://doi.org/10.1007/s00248-021-01831-7

Santoyo, G., Gamalero, E., & Glick, B. R. (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems, 5, Article 672881. https://doi.org/10.3389/fsufs.2021.672881

Saparrat, M. C., Ruscitti, M. F., & Arango, M. C. (Eds.). (2020). Micorrizas arbusculares: Biología y aplicaciones en el sector agro-forestal. Editorial de la Universidad Nacional de La Plata. https://doi.org/10.35537/10915/99599

Shi, J., Wang, X., & Wang, E. (2023). Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 74(1), 569-613. https://doi.org/10.1146/annurev-arplant-061722-090342

Ujvári, G., Turrini, A., Avio, L., & Agnolucci, M. (2021). Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 31(5), 527-544. https://doi.org/10.1007/s00572-021-01040-7

Venegas-Jaque, P., & Mestre, M. C. (2021). Hacia una fertilización sustentable: Los microorganismos del suelo son esenciales en los ecosistemas naturales. Desde la patagonia. Difundiendo saberes, 18(32), Article 32. https://revele.uncoma.edu.ar/index.php/desdelapatagonia/article/view/3640

Wang, F., & Feng, G. (2021). Arbuscular mycorrhizal fungi interactions in the rhizosphere. In V. V. S. R. Gupta & A. K. Sharma (Eds.), Rhizosphere biology: Interactions between microbes and plants (pp. 217-235). Springer. https://doi.org/10.1007/978-981-15-6125-2_11

Zhang, C., van der Heijden, M. G. A., Dodds, B. K., Nguyen, T. B., Spooren, J., Valzano-Held, A., Cosme, M., & Berendsen, R. L. (2024). A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 12(1), Article 13. https://doi.org/10.1186/s40168-023-01726-4

Zúñiga, A., Carrodeguas, A., & Solís, L. Y. (2023). Micorrizas y rhizobios: Un diálogo molecular con el huésped vegetal. Cultivos Tropicales, 43(2), Article e13. https://doi.org/10.1234/ct.v43i2.166

Descargas

Publicado

2024-09-23

Cómo citar

Watson-Guido, W. ., & Rivera-Méndez, W. (2024). Comunicación en las asociaciones simbióticas: mecanismos entre hongos micorrícicos arbusculares, plantas y organismos edáficos. Agronomía Mesoamericana, 57100. https://doi.org/10.15517/am.2024.57100

Número

Sección

Revisiones bibliográficas