Infrared thermography as a tool for measuring water stress index in avocado cultivars (Persea americana M.)

Authors

DOI:

https://doi.org/10.15517/am.2024.57230

Keywords:

stomatal conductance, abiotic stress, soil water content, vapor pressure deficit

Abstract

Introduction. Avocado cultivation is susceptible to water stress during the flowering stage and initial fruit growth. This stress can cause premature fruit drop and accentuate the alternation in production. Objective. To determine the water stress index of the crop (CWSI) in three avocado cultivars (Hass, Fuerte, and Zutano) under different irrigation conditions, using infrared thermography. Materials and methods. The study was carried out in the autumn season of 2023, at the Canaán Agricultural Experimental Station, Ayacucho, Peru. A total of 170 four-year-old avocado trees in the reproductive phase were selected. Five evaluations were carried out under different irrigation conditions, where information was collected after 14 and 7 days without irrigation (WI-14d and WI-7d) and 12, 2, and 1 hour after irrigation (AI-12h, AI-2h, and AI-1h, respectively). Leaf temperature (Th), stomatal conductance (gs), soil moisture (θ), and CWSI were recorded. Results. The three cultivars evaluated in this study showed significant differences in Th according to irrigation management. These variations, influenced by environmental temperature and humidity, established stress thresholds that defined the CWSI in a range from 0.34 to 0.96. When relating the CWSI with gs and θ, an R of 0.51 and 0.61 was obtained respectively. The Zutano cultivar showed the highest CWSI value in prolonged periods of irrigation restriction, but had a low capacity to reduce these values after rehydration, unlike the other cultivars. Conclusions. Infrared thermography is a crucial tool for assessing the water status and responses of avocado cultivars to different irrigation and environmental conditions, with Th and CWSI as indicators that respond to environmental conditions.

Downloads

Download data is not yet available.

References

Aguirre, B. A., Hsieh, B., Watson, S. J., & Wright, A. J. (2021). The experimental manipulation of atmospheric drought: Teasing out the role of microclimate in biodiversity experiments. Journal of Ecology, 109(5), 1986–1999. https://doi.org/10.1111/1365-2745.13595

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos (Estudio FAO Riego y Drenaje 56) Organización de las Naciones Unidas para la Agricultura y la Alimentación. http://www.fao.org/3/x0490s/x0490s.pdf

Anderson, D.B. (1936). Relative humidity of vapor pressure deficit. Ecology, 17, 277–282. https://doi.org/10.2307/1931468

Anyosa-Gutiérrez, B. J. (2019). Exportación y perspectiva del comercio de la palta Hass Peruana. Ciencia & Desarrollo, 15, 88-101. https://doi.org/10.33326/26176033.2013.15.330

Ashan Salgadoe, A. S., Robson, A. J., Lamb, D. W., & Dann, E. K. (2019). Assessment of canopy porosity in avocado trees as a surrogate for restricted transpiration emanating from phytophthora root rot. Remote sensing, 11(24), Article 2972. https://doi.org/10.3390/rs11242972

Ashrafuzzaman, M., Lubna, F. A., Holtkamp, F., Manning, W. J., Kraska, T., & Frei, M. (2017). Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environmental Pollution, 230, 339-350. https://doi.org/10.1016/j.envpol.2017.06.055

Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de fisiología vegetal (2ª ed.). Mc Graw Hill Education. https://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetal2008Azcon..pdf

Blaya-Ros, P. J., Blanco, M.V., Torres, S. R., González T. J. D., Espósito, M. E., & Domingo M. R. (2021, noviembre 3-5). Estudio de indicadores de suelo y planta para la programación del riego en cerezos jóvenes [Presentación de poster]. XXXVIII Congreso Nacional de Riegos, Cartagena, Colombia. https://doi.org/10.31428/10317/10096

Chanderbali, A. S., Albert, V. A., Ashworth, V. E., Clegg, M. T., Litz, R. E., Soltis, D. E., & Soltis, P. S. (2008). Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. BioEssays, 30(4), 386-396. https://doi.org/10.1002/bies.20721

Ekinzog, E. K., Schlerf, M., Kraft, M., Werner, F., Riedel, A., Rock, G., & Mallick, K. (2022). Revisiting crop water stress index based on potato field experiments in Northern Germany. Agricultural Water Management, 269, Article 107664. https://doi.org/10.1016/j.agwat.2022.107664

Flores-Izquierdo, M. A., & Espinoza-Villanueva, L. E. (2023). Situación actual y perspectivas de la producción de palta (Persea americana) peruana en el contexto del comercio internacional. Ingeniería Industrial, (45), 157-173. https://orcid.org/0000-0002-9986-5180

Food and Agriculture Organization. (2023). FAOSTAT. Retrieved March 24, 2023, from http://www.fao.org/faostat/en/#data/QC

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (16ª ed.). Universidad Nacional Autónoma de México. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83

Gardner, B.R., Nielsen, D.C., Shock, C.C., (1992). Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation. Journal of Production Agriculture, 5(4), 466–475. https://doi.org/10.2134/jpa1992.0466

Gil, P. M., Gurovich, L., Schaffer, B., García, N., & Iturriaga, R. (2009). Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia. Plant Signaling & Behavior, 4(2), 100-108. https://doi.org/10.4161/psb.4.2.7872

Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55. https://doi.org/10.1016/0002-1571(81)90032-7

Idso, S. B. (1982). Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27(1-2), 59-70. https://doi.org/10.1016/0002-1571(82)90020-6

Instituto de Desarrollo y Medio Ambiente. (2016). Prácticas agroecológicas para el cultivo de palto. https://idmaperu.org/wp-content/uploads/2023/03/MANUAL-PALTO-HVCA.pdf

Instituto Nacional de Estadística e Informática (2021). Producción de palta creció 15,2% en marzo de 2021 por mejores condiciones climáticas. https://m.inei.gob.pe/prensa/noticias/produccion-de-palta-crecio-152-en-marzo-de-2021-por-mejores-condiciones-climaticas-12892/

Jamshidi, S., Zand-Parsa, S., & Niyogi, D. (2021). Assessing crop water stress index of citrus using in-situ measurements, landsat, and sentinel-2 data. International Journal of Remote Sensing, 42(5), 1893-1916. https://doi.org/10.1080/01431161.2020.1846224

Knox, E. G. (1971). Criterios para clasificación de suelos según la sétima aproximación en las tres categorías superiores. Instituto Interamericano de Ciencias Agrícolas de la OEA. https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/1012b02a-e1d2-4f50-8847-fa3e3dbe0972/content

Lal, P. N., Mitchell, T., Aldunce, P., Auld, H., Mechler, R., Miyan, A., Romano, L. E., Zakaria, S., Dlugolecki, A., Masumoto, T., Ash, N., Hochrainer, S., Hodgson, R., Islam, T. U., Mc Cormick, S., Neri, C., Pulwarty, R., Rahman, A., Ramalingam, B., Sudmeier-Reiux, K., Tompkins, E., Twigg, J., Wilby, R. (2012). National systems for managing the risks from climate extremes and disasters. In Intergovernmental Panel on Climate Change (Ed.), Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change (pp. 339-392). Cambridge University Press. https://doi.org/10.1017/CBO9781139177245.009

Lin, S. -Y., Chen, P. -A., & Zhuang, B. -W. (2022). The stomatal conductance and Fv/Fm as the indicators of stress tolerance of avocado seedlings under short-term waterlogging. Agronomy, 12(5), Article 1084. https://doi.org/10.3390/agronomy12051084

López, R. L., Ramírez, R. A., Peña, M. A. V., Cruz, I. L., & Cohen, I. S. (2009). Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura Técnica en México, 35(1), 92-106. https://www.scielo.org.mx/pdf/agritm/v35n1/v35n1a10.pdf

Lozano-Povis, A., Alvarez-Montalván, C., & Moggiano, N. (2021). El cambio climático en los andes y su impacto en la agricultura: una revisión sistemática. Scientia Agropecuaria, 12(1), 101-108 http://dx.doi.org/10.17268/sci.agropecu.2021.012

Machaca-Pillaca, R., Pino-Vargas, E., Ramos-Fernández, L., Quille-Mamani, J., & Torres-Rua, A. (2022). Estimación de la evapotranspiración con fines de riego en tiempo real de un olivar a partir de imágenes de un drone en zonas áridas, caso La Yarada, Tacna, Perú. Idesia (Arica), 40(2), 55-65. http://dx.doi.org/10.4067/S0718-34292022000200055

Millán, S., Campillo, C., Vivas, A., Moñino, M. J., & Prieto, M. H. (2020). Evaluación de diferentes medidas de planta para identificación y caracterización de la respuesta al riego del ciruelo japonés para gestión del riego. In S. Mendes, & I. Valín (Eds.), Actas Portugesas de Horticultura. Agricultura 4.0. II Simpósio Ibérico de Engenharia Hortícola 2020 (pp. 72-78). Associação Portuguesa de Horticultura. https://aphorticultura.pt/wp-content/uploads/2021/09/Actas-II-Simp%C3%B3sio-Ib%C3%A9rico-de-Engenharia-Hort%C3%ADcola.pdf

Mira-García, A. B., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2022). Water status and thermal response of lime trees to irrigation and shade screen. Agricultural Water Management, 272, Article 107843. https://doi.org/10.1016/j.agwat.2022.107843

Olías, M., Cerón, J. C., & Fernández, I., (2005). Sobre la utilización de la clasificación de las aguas de riego del US Laboratory Salinity (USLS). Geogaceta, 37(3), 111-113. https://sge.usal.es/archivos/geogacetas/Geo37/Geo37-28.pdf

Parada-Molina, P. C., Pérez-Silva, C. R., Cerdán-Cabrera, C. A., & Soto-Enrique, A. (2022). Condiciones climáticas y microclimáticas en sistemas de producción de vainilla (Vanilla planifolia Jacks. ex Andrews) en México. Agronomía Mesoamericana, 33(2), 48682-48682. https://doi.org/10.15517/am.v33i2.48682

Park, S., Ryu, D., Fuentes, S., Chung, H., O’connell, M., & Kim, J. (2021). Dependence of CWSI-based plant water stress estimation with diurnal acquisition times in a nectarine orchard. Remote Sensing, 13(14), Article 2775. https://doi.org/10.3390/rs13142775

Pineda, M., Baron, M., & Perez-Bueno, M. -L. (2021). Thermal imaging for plant stress detection and phenotyping. Remote Sensing, 13(1), Article 68. https://doi.org/10.3390/rs13010068

Pino, E., Montalván, I., Vera, A., & Ramos, L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia (Arica), 37(4), 55-64. http://dx.doi.org/10.4067/S0718-34292019000400055

Quezada, C., Bastias, R., Quintana, R., Arancibia, R., & Solís, A. (2020). Validación del índice de estrés hídrico de cultivo (CWSI) mediante termografía infraroja y su incidencia en rendimiento y calidad en manzanas'royal gala'. Chilean Journal of Agricultural & Animal Sciences, 36(3), 198-207. http://dx.doi.org/10.29393/chjaas36-18vicq50018

Ramos-Fernández, L., Gonzales-Quiquia, M., Huanuqueño-Murillo, J., Tito-Quispe, D., Heros-Aguilar, E., Flores del Pino, L., & Torres-Rua, A. (2024). Water Stress Index and Stomatal Conductance under Different Irrigation Regimes with Thermal Sensors in Rice Fields on the Northern Coast of Peru. Remote Sensing, 16(5), Article 796. https://doi.org/10.3390/rs16050796

Ríos-Hernández, R. (2021). Uso de los Drones o Vehículos Aéreos no Tripulados en la Agricultura de Precisión. Revista Ingeniería Agrícola, 11(4), 75-84.

Rohwer, J. G. (1993). Lauraceae. In K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.), Flowering plants·dicotyledons. The families and genera of vascular plants (Vol 2., pp. 366-391). Springer, Berlin. https://doi.org/10.1007/978-3-662-02899-5_46

Salazar-García, S., & Lazcano-Ferrat, I. (1999). Diagnóstico nutrimental del aguacate ‘Hass’ bajo condiciones de temporal. Revista Chapingo Serie Horticultura, 5, 173-184. https://www.avocadosource.com/WAC4/WAC4_p173.pdf

Sánchez-Piñero, M., Martín-Palomo, M. J., Andreu, L., Moriana, A., & Corell, M. (2022). Evaluation of a simplified methodology to estimate the IEHC in olive orchards. Agricultural Water Management, 269, article 107729. https://doi.org/10.1016/j.agwat.2022.107729

Schaffer, B., Wolstenholme, B. N., & Whiley, A. W. (Eds.). (2013). The avocado: botany, production and uses. CABI. https://www.cabidigitallibrary.org/doi/abs/10.1079/9781845937010.0000

Schulze, E. D. (1986). Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology, 37(1), 247-274. https://doi.org/10.1146/annurev.pp.37.060186.001335

Serrano-Pérez, E., & Sandoval-Villa, M. (2023). Low-cost electronic system for monitoring vapor pressure deficit and sunlight using a Raspberry Pi Pico board. Boletín Científico INVESTIGIUM de la Escuela Superior de Tizayuca, 8(16), 7-11. https://doi.org/10.29057/est.v8i16.9651

Tineo Canchari, J. I., Velásquez Ochoa, R., & Villantoy Palomino, A. (2018). Curso virtual manejo integrado del cultivo de palto. Instituto Nacional de Innovación Agraria. https://pgc-aulavirtual.inia.gob.pe/pluginfile.php/611/mod_resource/content/1/MODULO-I.pdf

Ucak, A. B., Kocięcka, J., Liberacki, D., Saltuk, B., Atilgan, A., Stachowski, P., & Rolbiecki, R. (2024). The effects of high temperature and low humidity on crop water stress index of seed pumpkin plants (Cucurbita pepo L.) in semi-arid climate conditions. Acta Scientiarum Polonorum Hortorum Cultus, 23(1), 63-73. https://doi.org/10.24326/asphc.2024.5287

Varela, S. A. (2010). Aspectos básicos de la fisiología en respuesta al estrés y el clima como condicionante del mismo en las plantas (Comunicación Técnica No. 78, Área Forestal). Instituto Nacional de Tecnología Agropecuaria. https://exa.unne.edu.ar/biologia/fisiologia.vegetal/Aspectosb%C3%A1sicosfisiolog%C3%ADarespuestaestr%C3%A9s..pdf

Vargas, P. (2009). El cambio climático y sus efectos en el Perú. Banco Central de Reserva del Perú. https://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2009/Documento-de-Trabajo-14-2009.pdf

Vivero, A., Valenzuela, R., Valenzuela, A., & Morales, G. (2019). Palta: compuestos bioactivos y sus potenciales beneficios en salud. Revista Chilena de Nutrición, 46(4), 491-498. http://dx.doi.org/10.4067/S0717-75182019000400491

Webber, H. J. (1917). Cold resistance of the avocado. California Avocado Association Annual Report, 3, 49–50. https://www.avocadosource.com/CAS_Yearbooks/CAS_03_1917/CAS_1917_PG_49-51.pdf

Wen, T., Li, J. H., Wang, Q., Gao, Y. Y., Hao, G. F., & Song, B. A. (2023). Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Science of The Total Environment, 899, Article 165626. https://doi.org/10.1016/j.scitotenv.2023.165626

Zia, S., Wenyong, D., Spreer, W., Spohrer, K., Xiongkui, H., & Müller, J. (2012). Assessing crop water stress of winter wheat by thermography under different irrigation regimes in North China Plain. International Journal of Agricultural and Biological Engineering, 5(3), 24-34. https://doi.org/10.3965/j.ijabe.20120503.003

Published

2024-09-23

How to Cite

Ramos-Fernández, L. ., Galindo-Sánchez, M. M., Núñez-Alfaro, H., Espinoza-Núñez, E., Pino-Vargas, E., & del Águila-Ríos, S. (2024). Infrared thermography as a tool for measuring water stress index in avocado cultivars (Persea americana M.). Agronomía Mesoamericana, 57230. https://doi.org/10.15517/am.2024.57230

Issue

Section

Articles

Most read articles by the same author(s)