Influence of mycorrhizal fungi on growth and cadmium adsorption in sunflower (Helianthus annuus L.)

Authors

DOI:

https://doi.org/10.15517/am.2024.57500

Keywords:

pollution, phytoremediation, heavy metals, natural products

Abstract

 

Introduction. Heavy metals can accumulate in the soil and affect plant growth. The symbiosis established between plants and arbuscular mycorrhiza-forming fungi (AMF) improves the tolerance of plants to heavy metal toxicity, being considered an alternative for the management of plants grown in soils affected by heavy metals. Objective. To evaluate the effect of different arbuscular mycorrhizal-forming fungi on cadmium (Cd) adsorption and vegetative growth of sunflower (Helianthus annuus L.). Materials and methods. The research was carried out in the years 2021-2023, at the National Institute of Agricultural Sciences (INCA), San José de las Lajas, Mayabeque, Cuba. Sunflower seeds were inoculated with the strains INCAM-4 (Glomus cubense) and INCAM-11 (Rhizoglomus intraradices), at a rate of 45 spores/g, in a soil with high levels of Cd. After 60 days, the plant height, dry weight, chlorophyll content, percentage of mycorrhization and viability of fungal structures, and the effect of AMF on cadmium partitioning in sunflower plants were evaluated. Results. Sunflower plants showed a beneficial response to inoculation with strains of arbuscular mycorrhizal fungi, with a differentiated behavior between the strains and with the greatest effects obtained in growth, biomass production and in the phytoextraction process with the INCAM-11 strain, by increasing the concentration of metal in the plants to 8.01 mg kg-1 and an infection percentage of 60 % and a visual density of 5.01. Conclusions. Arbuscular mycorrhizae increased cadmium adsorption and vegetative growth of sunflower.

Downloads

Download data is not yet available.

References

Alaboudi, K. A., Ahmed, B. M., & Brodie, G. I. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), 123–127. https://doi.org/10.1016/j.aoas.2018.05.007

Audet, P., & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environmental Pollution, 147(3), 609–614. https://doi.org/10.1016/j.envpol.2006.10.006

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, Article 1068. https://doi.org/10.3389/fpls.2019.01068

Belezaca Pinargote, C., Solano Apuntes, E., Díaz Romero, O., Díaz Navarrete, P., & Guachambala Cando, M. (2020). Hongos de micorriza arbuscular presentes en Ochroma pyramidale (Cav. ex Lam.) Urb. (Balsa) en Ecuador. Journal of Science and Research, 5(3), 71–84. https://revistas.utb.edu.ec/index.php/sr/article/view/899

Bernardo, V., Collado, F., Arango, C., Garita, S., & Ruscitti, M. (2018). La inoculación con hongos micorrícicos y la aplicación de ácido salicílico aumentan la tolerancia a cobre en plantas de pimiento. Ciencias Agronómicas, 31, 7–16. http://hdl.handle.net/11336/93373

Carrillo-Saucedo, S. M., Puente-Rivera, J., Montes-Recinas, S., & Cruz-Ortega, R. (2022). Las micorrizas como una herramienta para la restauración ecológica. Acta Botánica Mexicana, 129, Artículo e1932. https://doi.org/10.21829/abm129.2022.1932

Cengiz, K., Muhammed, A., Osman, S., Salih, A., Atilla Levent, T., & Mehmet Ali, C. (2009). The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121(1), 1–6. https://doi.org/10.1016/j.scienta.2009.01.001

Cheema, A., & Garg, N. (2022). Differential effectiveness of arbuscular mycorrhizae in improving rhizobial symbiosis by modulating sucrose metabolism and antioxidant defense in chickpea under as stress. Symbiosis, 86(2), 49–69. https://doi.org/10.1007/s13199-021-00815-y

Colina Navarrete, E., Flores Leturne, H., Castro Arteaga, C., Vera Suarez, M., & García Sánchez, A. (2022). Influencia de hongos micorrízicos más ácidos húmicos en la producción de maíz duro (Zea mays L.) en Babahoyo. Journal of Science and Research, 7(2), 13–34. https://doi.org/10.5281/zenodo.7261608

Han, Y., Zhuang, N., & Wang, T. (2021). Roles of PINK1 in regulation of systemic growth inhibition induced by mutations of PTEN in Drosophila. Cell Reports, 34(12), Article 108875. https://doi.org/10.1016/j.celrep.2021.108875

Hernández-Jiménez, A., Pérez-Jiménez, J. M., Bosch-Infante, D., & Castro Speck, N. (2019). La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales, 40(1), a15–e15. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1504

Herrera-Peraza, R. A., Furrazola, E., Ferrer, R. L., Fernández Valle, R., & Torres Arias, Y. (2021). Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba. Revista CENIC Ciencias Biológicas, 35(2), 113–123. https://revista.cnic.cu/index.php/RevBiol/article/view/1199

Janeeshma, E., & Puthur, J. T. (2020). Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Archives of Microbiology, 202(1), 1–16. https://doi.org/10.1007/s00203-019-01730-z

Jinxiu, Z., Su, L., Yan, K., Li, M., He, Y., Zu, Y., Zhan, F., & Li, T. (2020). An arbuscular mycorrhizal fungus increased the macroaggregate proportion and reduced cadmium leaching from polluted soil. International Journal of Phytoremediation, 23(7), 684–692. https://doi.org/10.1080/15226514.2020.1849014

Joner, E., & Leyval, C. (2001). Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils, 33, 351–357. https://doi.org/10.1007/s003740000331

Li, Z., Wu, N., Meng, S., Wu, F., & Liu, T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS ONE, 15(4), Article e0231497. https://doi.org/10.1371/journal.pone.0231497

Mendarte-Alquisira, C., Alarcón, A., & Ferrera-Cerrato, R. (2021). Fitorremediación: alternativa biotecnológica para recuperar suelos contaminados con DDT. Una revisión. TIP Revista Especializada en Ciencias Químico-Biológicas, 24, 1–15. https://doi.org/10.22201/fesz.23958723e.2021.326

Munive Cerrón, R., Gamarra Sánchez, G., Munive Yachachi, Y., Puertas Ramos, F., Valdiviezo Gonzales, L., & Cabello Torres, R. (2020). Absorción de plomo y cadmio por girasol de un suelo contaminado y remediado con enmiendas orgánicas en forma de compost y vermicompost. Scientia Agropecuaria, 11(2), 177–186. https://dx.doi.org/10.17268/sci.agropecu.2020.02.04

Rabie, G. H. (2005). Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. African Journal of Biotechnology, 4(4), 332–345. https://www.ajol.info/index.php/ajb/article/view/15103#:~:text=It%20also%20significantly%20increased%20root,heavy%20metals%20artificially%20contaminated%20soils.

Riopedre-Galán, T., Delgado-Álvarez, A., Cabrera-Rodríguez, J. A., & Cartaya-Rubio, O. E. (2022). Relación entre los metales pesados y los hongos formadores de micorrizas arbusculares. Cultivos Tropicales, 42(4), Artículo e14. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1623

Rodríguez Yon, Y., Arias Pérez, L., Medina Carmona, A., Mujica Pérez, Y., Medina García, L. R., Fernández Suárez, K., & Mena Echevarría, A. (2015). Alternativa de la técnica de tinción para determinar la colonización micorrízica. Cultivos Tropicales, 36(2), 18–21. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/961

Suaña Quispe, M. E. (2018). Capacidad del girasol (Helianthus annus L.) para absorber cadmio de suelos contaminados en ambiente controlado, Puno. Revista de Investigaciones, 7(1), 393–401. https://doi.org/10.26788/riepg.v7i1.313

Trouvelot, A., Kough, J. L., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une significantion fonctionnelle. Institut National de la Recherche Agronomique.

Vallejos-Torres, G., Ruíz-Valles, R., Chappa-Santa María, C. E., Gaona-Jiménez, N., & Marín, C. (2021). High genetic diversity in arbuscular mycorrhizal fungi influence cadmium uptake and growth of cocoa plants. Bioagro, 34(1), 75–84. https://doi.org/10.51372/bioagro341.7

Yazdanbakhsh, A., Alavi, S. N., Valadabadi, S. A., Karimi, F., & Karimi, Z. (2020). Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil and Water Research, 13, Article 1178622119898460. https://journals.sagepub.com/doi/epub/10.1177/1178622119898460

Additional Files

Published

2024-06-13

How to Cite

Cartaya-Rubio, O. E., Mujica-Perez, Y., & Blanco-Valdes, Y. (2024). Influence of mycorrhizal fungi on growth and cadmium adsorption in sunflower (Helianthus annuus L.). Agronomía Mesoamericana, 35, 57500. https://doi.org/10.15517/am.2024.57500