Effect of oligogalacturonides on the biochemical response of tomato under high metal concentrations
DOI:
https://doi.org/10.15517/am.2024.54136Keywords:
axidative stress, biostimulants, soil pollution, inorganic contaminantsAbstract
Introduction. Heavy metal pollution is a growing problem due to human activities. Plants can remove, destroy, or transform contaminants from soil, water, and air. By using plant growth regulators and chelating agents, heavy metal toxicity can be reduced. Objective. To evaluate the effect of applying a mixture of oligogalacturonides on peroxidase activity and the contents of malondialdehyde, total protein, and chlorophylls in tomato plants (Solanum lycopersicum L.) var. Amalia subjected to high levels of heavy metals. Materials and methods. Soil contaminated with Cu, Cd, and Fe was collected from the Adalberto Vidal White Ceramic Company in Mayabeque, Cuba, in 2020. The experiment was conducted in 7 kg capacity bags using tomato plants, under semi-controlled conditions at the Instituto Nacional de Ciencias Agrícolas (INCA), with a completely randomized experimental design with each treatment having ten replicates. The treatments with the oligogalacturonides (Ogal) were soil application (30 mg kg-1); foliar spray (20 mg L-1), the combination of these application forms, and a control. Peroxidase activity and the contents of malondialdehyde, total protein, and chlorophylls were determined at 35 and 56 days after the plant’s emergence. Results. The effect of Cu, Cd, and Fe on the seedlings was attenuated by all the use of the Ogal mixture variants use, indicating that they have developed adaptation mechanisms to high metal concentrations which allows to withstand abiotic stress. Conclusions. The Ogal mixture attenuated the effect of heavy metals on peroxidase activity, malondialdehyde content, total proteins, and chlorophylls in Amalia tomato plants.
Downloads
References
Alcantara Cortes, J. S., Acero Godoy, J., Alcántara Cortés, J. D., & Sánchez Mora, R. M. (2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova, 17(32), 109–129. https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1036
Apaza Machaca, D. A., Mestas Valdivia, B. R., Romero Vargas, F. F., & Navarro Oviedo, R. D. (2019). Copper toxicity on the stomata morphology of Gochnatia arequipensis Sandwith (Asteraceae) from two localities of Arequipa, Perú. Idesia (Arica), 37(3), 81–87. http://dx.doi.org/10.4067/S0718-34292019000300081
Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg) mecanismos bioquímicos e ingeniería genética: Una revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/rfcb.2027
Falcón Rodríguez, A. B., González-Peña, D., Nápoles García, M. C., Morales Guevara, D. M., Núñez Vázquez, M. C., Cartaya Rubio, O. E., Martínez González, L., Terry Alfonso, E., Costales Menéndez, D., Dell Amico, J. M., Jerez Mompié, E., González Gómez, L. G., & Jiménez Arteaga, M. C. (2021). Oligosacarinas como bioestimulantes para la agricultura cubana. Anales de la Academia de Ciencias de Cuba, 11(1), Artículo e852. https://revistaccuba.sld.cu/index.php/revacc/article/view/852
Delgadillo-López, A. E., González-Ramírez, C. A., Prieto-García, F., Villagómez-Ibarra, J. R., & Acevedo-Sandoval, O. (2011). Fitorremediación: una alternativa para eliminar la contaminación. Tropical and Subtropical Agroecosystems, 14(2), 597–612. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/814/565
Delgado-Oramas, B. P. (2020). Induced resistance as an alternative for pest management in crops. Revista de Protección Vegetal, 35(1), 1–12.
Delince, W., Valdés Carmenate, R., López Morgado, O., Guridi Izquierdo, F., & Balbín Arias, M. I. (2015). Riesgo agroambiental por metales pesados en suelos con cultivares de Oryza sativa L y Solanum tuberosum L. Revista Ciencias Técnicas Agropecuarias, 24(1), 44–50.
Espinosa-Antón, A. A., Hernández-Herrera, R. M., & González-González, M. (2020). Extractos bioactivos de algas marinas como bioestimulantes del crecimiento y la protección de las plantas. Biootecnología Vegetal, 20(4), 257–282.
Guzmán-Morales, A., Cruz-La Paz, O., & Valdés-Carmenate, R. (2019). Effects of the pollution by heavy metals in a soil with agricultural use. Revista Ciencias Técnicas Agropecuarias, 28(1), 1–9.
Hernández-Baranda, Y., Rodríguez-Hernández, P., Peña-Icart, M., Meriño-Hernández, Y., & Cartaya-Rubio, O. (2019). Toxicidad del Cadmio en las plantas y estrategias para disminuir sus efectos. Estudio de caso: El tomate. Cultivos Tropicales, 40(3), Artículo e10. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1524
Hernández-Jiménez, A., Pérez-Jiménez, J. M., Bosch-Infante, D., & Castro Speck, N. (2019). La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales, 40(1), Artículo e15. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1504
Hong Zhang, Z., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F., Wray, N. R., & Zhao, Q. -Y. (2014). A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS ONE, 9(8), Article e103207. https://doi.org/10.1371/journal.pone.0103207
Hu, Z., Wang, C., Li, K., & Zhu, X. (2018). Distribution, characteristics and pollution assessment of soil heavy metals over a typical nonferrous metal mine area in Chifeng, Inner Mongolia, China. Environment Earth Science, 77, Article 638. https://doi.org/10.1007/s12665-018-7771-1
Iram, S., Zaman, A., Iqbal, Z., & Shabbir, R. (2013). Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Polish Journal of Environmental Studies, 22(3), 691–697. http://www.pjoes.com/Heavy-Metal-Tolerance-of-Fungus-Isolated-r-nfrom-Soil-Contaminated-with-Sewage-r,89023,0,2.html
Kozłowski, R., Jóźwiak, M., Jóźwiak, M. A., & Rabajczyk, A. (2011). Chemism of atmospheric precipitation as a consequence of air pollution: The case of Poland’s Holy cross mountains. Polish Journal of Environmental Studies, 20(4), 919-924. http://www.pjoes.com/Chemism-of-Atmospheric-Precipitation-r-nas-a-Consequence-of-Air-Pollution-the-Case,88634,0,2.html
Llatance Oyarce, W., Emiliani, J., Bergara, C. D., Salvatierra, L. M., & Pérez, L. M. (2019). Caracterización de los mecanismos de fitorremediación de Salvinia sp. frente a la exposición a metales pesados y su impacto sobre la fisiología vegetal. Energeia, 16(16), 37–45.
Mederos-Torres, Y., Hormaza-Montenegro, J., Reynaldo-Escobar, I., & Montesino-Sequi, R. (2011). Caracterización de mezclas de oligogalacturónidos Bioactivos. Revista CENIC Ciencias Químicas, 42(2-3), 1–5. https://revista.cnic.edu.cu/index.php/RevQuim/article/view/547
Navarro-Aviñó, J., Aguilar Alonso, I., & López-Moya, J. (2007). Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2), 10–25. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/125
Pabón, S. E., Benítez, R., Sarria-Villa, R. A., & Gallo, J. A. (2020). Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Ciencia e Ingeniería, 14(27), 9–18. https://doi.org/10.31908/19098367.1734
Perales Aguilar, L., Santos Díaz, M. del S., Gómez Aguirre, Y. A., Ramos Gómez, M. S., & Pérez Molphe Balch, E. (2020). Análisis in vitro de la acumulación de metales pesados en plantas de la familia Asparagaceae tolerantes a la baja disponibilidad de agua. Nova Scientia, 12(24), 1–22.
Perales-Aguilar, L., Esquivel-Rivera, J. A., Silos-Espino, H., Carrillo-Rodríguez, J. C., & Perales-Segovia, C. (2021). Tolerancia de plantas de zonas áridas a metales pesados. Terra Latinoamericana, 39, Artículo e–759. https://doi.org/10.28940/terra.v39i0.759
Pérez-Álvarez, S., Héctor-Ardisana, E. F., Escobedo-Bonilla, C. M., Flores-Córdova, M. A., Sánchez-Chávez, E., & Urías García, C. (2022). Actividad bioquímica y molecular de enzimas del estrés oxidativo en plantas de tomate creciendo con plomo. Ecosistemas y Recursos Agropecuarios, 8(3), Artículo e3163. https://doi.org/10.19136/era.a8n3.3163
Ramírez Gottfried, R., García Carrillo, M., Álvarez Reyna, V. de P., González Cervantes, G., & Hernández Hernández, V. (2019). Potencial fitorremediador de la chicura (Ambrosia ambrosioides) en suelos contaminados por metales pesados. Revista Mexicana de Ciencias Agrícolas, 10(7), 1529–1540. https://doi.org/10.29312/remexca.v10i7.1731
Romero-Puertas, M. C., Terrón-Camero, L. C., Peláez-Vico, M. Á., Olmedilla, A., & Sandalio, L. M. (2019). Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental and Experimental Botany, 161, 107–119. https://doi.org/10.1016/j.envexpbot.2018.10.012
Sánchez-Zepeda, M. Y., López-Herrera, M., & Romero-Bautista, L. (2021). Determinación de la capacidad de biacumulación de cadmio en Vicia faba L. y su efecto en la raíz y el crecimiento vegetativo. Revista Biológico Agropecuaria Tuxpan, 9(2), 46–60. https://doi.org/10.47808/revistabioagro.v9i2.358
Silva, J. R. R., Fernandes, A. R., Silva Junior, M. L., Santos, C. R. C., & Lobato, A. K. S. (2018). Tolerance mechanisms in Cassia alata exposed to cadmium toxicity-potential use for phytoremediation. Photosynthetica, 56(2), 495–504. https://doi.org/10.1007/s11099-017-0698-z
Suárez González, O., Valcarce Ortega, R. M., Vega Carreño, M., & Rodríguez Miranda, W. (2021). Riesgo de contaminación de las aguas subterráneas en la cuenca Almendares-Vento, Cuba. Ingeniería Hidráulica y Ambiental, 42(3), 154–176. https://riha.cujae.edu.cu/index.php/riha/article/view/555
Terrón-Camero, L., del Val, C., Sandalio, L. M., & Romero-Puertas, M. C. (2020). Low endogenous no levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. Environmental Pollution, 256, Article 113411. https://doi.org/10.1016/j.envpol.2019.113411
Vieira de Sousa, L., da Silva, T. I., de Queiroz Lopes, M. de F., da Silva Leal, M. P., Sousa Basilio, A. G., de Melo Filho, J. S., Leal, Y. H., & Dias, T. J. (2021). Estrés salino y regulador del crecimiento vegetal en la albahaca: efectos sobre las plantas y el suelo. DYNA, 88(217), 75–83. https://doi.org/10.15446/dyna.v88n217.87633
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Omar Enrique Cartaya-Rubio, Ana Ma. Moreno Zamora, Fernándo Guridi Izquierdo, Yaisys Blanco-Valdes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).