Gene expression in Longissimus dorsi and liver in two stages of growth in pigs

Authors

DOI:

https://doi.org/10.15517/am.2024.57540

Keywords:

cromosome, transcriptome, DESeq2, method

Abstract

Introduction. It is said that genetic expression varies in relation to the physiological stage of the pig and the nutritional source, it is different in muscle and liver. Objective. Identify the genes that present differential genetic expression, through transcriptome analysis in Longissimus dorsi and liver, during growth and final fattening, differentiating them into two stages of pig fattening, growth group (55 ± 1.05 kg) and final group (101 ± 7.8kg). Materials and methods. 12 total samples were considered, three from Longissimus dorsi muscle and three from liver per stage for RNA extraction and sequencing. With the DESeq2 method, the gene expression of the Log2FC was obtained differentially for the Growth Group vs final fattening of Longissimus dorsi and Liver and the biological function of the DEG genes was identified. Results. The largest number of genes with DEG were identified in the liver and on chromosome 6 in Longissimus dorsi and liver. In Longissimus dorsi from the growth group with high expression, the genes FUT1, SESN2 and FGF21 associated with growth and with low expression, NR4A3, PDK4, PER1 and PTPRO involved in immune system processes and circadian rhythm were identified. In the liver of the Growth Group, with high expression, the IHH and MYL7 genes were identified, and with low expression, the genes MFSD2A, LIPG, THBS1, TGFB2, LTF and APOA4 were identified as those most involved in biological processes. Conclusions. In Longissimus dorsi from the growth group the genes were related to growth and in final fattening with immunity, growth and meat quality. In the liver of the growth group the genes were related to growth and in the final fattening group with immunity, growth, nutrient and lipid metabolism, lipoproteins and detoxification.

Downloads

Download data is not yet available.

References

Albuquerque, A., Óvilo. C., Núñez, Y., Benítez, R., López-García, A., García, F., Félix, M. R., Laranjo, M., Charmeca, R., & Martins, J. M. (2020). Comparative transcriptomic analysis of subcutaneous adipose tissue from local pig breeds. Genes, 11(4), Article 422. https://doi.org/10.3390/genes11040422

Aleksander, S. A., Balhoff, J., Carbono, S., Cereza, J. M., Drabkin, H. J., Ebert, D., Feuermann, M., Gaudet, P., Harris, N. L., Hill, D. P., Lee, R., Mi, H., Moxón, S., Mungall, C., Muruganugan, A., Mushayahama, T., Sternberg, P., Thomas, P., Van Auken, K., … Westerfield, M. (2023). The gene ontology knowledgebase in 2023. Genetics, 224(1), Article iyad031. https://doi.org/10.1093/genetics/iyad031

Benítez, R., Núñez, Y., Fernández, A., Isabel, B., Fernández, A. I., Rodríguez, C., Barragán, D., Martín-Palomino, P., López-Bote, C., Silió, L., & Óvilo, C. (2015). Effects of dietary fat saturation on fatty acid composition and gene transcription in different tissues of Iberian pigs. Meat Science, 102, 59–68. https://doi.org/10.1016/j.meatsci.2014.12.005

Benítez, R., Núñez, Y., Ayuso, M., Isabel, B., Fernández-Barroso, M. A., de Mercado, E., Gómez-Izquierdo, E., García-Casco, J. M., López-Bote, C., & Óvilo, C. (2021). Changes in biceps femoris transcriptome along growth in Iberian pigs fed different energy sources and comparative analysis with Duroc breed. Animals, 11, Article 3505. https://doi.org/10.3390/ani11123505

Figuereido Cardoso, T., Quintanilla, R., Tibau, J., Gil, M., Marmol-Sánchez, E., González-Rodríguez, O., González-Prendes, R., & Amills, M. (2017). Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle. BMC Genomics, 18(1), Article 603. https://doi.org/10.1186/s12864-017-3986-x

Fergal, J. M., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A., Barnes, S., Becker, A., Bennet, R., Berry, A., Bhai, J., Kaur, B. S., Bignell, A., Boddu, S., Branco Lins, P. R., Brooks, L., Budhanuru Ramadaju, S., Charkhchi, M., Cockburn, A., Da Rin Fioreto, L,… Flicek, P. (2023). Ensembl 2023. Nucleic Acids Research, 51(1), 933–941. https://doi.org/10.1093/nar/gkac958

Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931

Hesselager, M. O., Everest-Dass, A. V., Thaysen-Andersen, M., Bendixen, E., & Packer, N.H. (2016). FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa. Glycobiology, 26(6), 607–622. https://doi.org/10.1093/glycob/cww009

Jiménez-Jacinto, V., Sanchez-Flores, A., & Vega-Alvarado, L. (2019). Integrative differential expression analysis for multiple experiments (IDEAMEX): A web server tool for integrated RNA-Seq data analysis. Frontiers in Genetics, 11, Article 279. https://doi.org/10.3389/fgene.2019.00279

Lemus-Flores, C., Alonso-Morales, R., Toledo-Alvarado, H., Sansor-Nah, R., Burgos-Paz, W., & Dzib-Cauich, D. (2020). Diversidad genética y estructura poblacional del cerdo negro lampiño de Yucatán usando chip SNP50. Abanico Veterinario, 10, 1-12. http://dx.doi.org/10.21929/abavet2020.10

Love, M. I., Huber, W., & Anders, A. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology,15, Article 550. https://doi.org/10.1186/s13059-014-0550-8

Malgwi, I. H., Halas, V., Grünvald, P., Schiavon, S., & Jócsák, I. (2022). Genes related to fat metabolism in pigs and intramuscular fat content of pork: a focus on nutrigenetics and nutrigenomics. Animals, 12(2), Article 150. https://doi.org/10.3390/ani12020150

Muñoz, M., García-Casco, J. M., Caraballo, C., Fernández-Barroso, M. A., Sánchez-Esquiliche, F., Gómez, F., Rodríguez, M. C., & Silió, L. (2018). Identification of candidate genes and regulatory factors underlying intramuscular fat content through Longissimus dorsi transcriptome analyses in heavy iberian pigs. Frontiers in Genetics, 9, Article 608. https://doi.org/10.3389/fgene.2018.00608

Muñoz, M., Fernández-Barroso, M. A., López-García, A., Caraballo, C., Nuñez, Y., Óvilo, C., González, E., & García-Casco, J. M. (2021). Consequences of a low protein diet on the liver and Longissimus dorsi transcriptome of duroc×iberian crossbred pigs. Animal, 15(12), Article 100408 https://doi.org/10.1016/j.animal.2021.100408

Núñez, Y., Radovic´, Cˇ., Savic´, R., García-Casco, J. M., Cˇandek-Potokar, M., Benítez, R., Radojkovic´, D., Lukic´, M., Gogic´, M., Muñoz, M., Fontanesi, L., & Óvilo, C. (2021). Muscle transcriptome analysis reveals molecular pathways related to oxidative phosphorylation, antioxidant defense, fatness and growth in mangalitsa and moravka pigs. Animals, 11, Article 844. https://doi.org/10.3390/ani11030844

NRC Nutrient Requirements. (2019, march 2). nutriente requirements os Swine. 11th Ed. National Academy Press. 2012; Washinton, DC. https://norecopa.no/textbase/nutrient-requirements-of-swine/

Óvilo. C., Benítez, R., Fernández, A., Isabel, B., Núñez, Y., Fernández, A. I., Rodríguez, C., Daza, A., Silió, L., & López-Bote, C. (2014). Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in iberian pigs. Journal of Animal Science, 92, 939–954. https://doi.org/10.2527/jas.2013-6988

Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. (2016). Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6, Article 31803. https://doi.org/10.1038/srep31803

Shang-Qiao, S., Wei-wei, M., Su-Xian, Z., Chao-Long, Z., Jin, Y., Cui-Cui, S., & Zong-Qiang, S. (2019). Transcriptome analysis of differential gene expression in the Longissimus dorsi muscle from debao and landrace pigs based on RNA-sequencing. Bioscience Reports, 39(12), 1-23. https://doi.org/10.1042/BSR20192144

Sanger Institute. (2020, November 21). Pig genome. Smalt 0.7.6. https://www.sanger.ac.uk/data/pig-genome/

The Human Gene Database. (2023, October 4). IHH Gene - Indian Hedgehog Signaling Molecule. https://www.genecards.org/cgi-bin/carddisp.pl?gene=IHH

The Human Protein Atlas. (2023, February 2). The open access resource for human proteins. https://www.proteinatlas.org/

Tamiyakul, H., Kemter, E., Kösters, M., Ebner, S., Blutke, A., Klymiuk, N., Flenkenthaler, F., Wolf, E., Arnold, G. J., & Fröhlich, T. (2020). Progressive proteome changes in the myocardium of a pig model for duchenne muscular dystrophy. IScience, 23(9), Article 101516. https://doi.org/10.1016/j.isci.2020.101516

Tao, X., Liang, Y., Yang, X., Pang, J., Zhong, Z., Chen, X., & Lu, X. (2017). Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition. PLoS ONE, 12(9), Article e0184120. https://doi.org/10.1371/journal.pone.0184120

Wang, H., Wang, J., Dan-Dan, Y., Zong-Li, I., Yong-Qing, Z., & Chen, W. (2020). Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in laiwu pigs. Asian-Australasian Journal of Animal Science, 33(3), 390-397. https://doi.org/10.5713/ajas.18.0225

Wang, L., Zhong-Yin, Z., Zhang, T., Zang, L., Hou, X., Yan, X., & Wang, L. (2021). IRLnc: a novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genomics, 22, Article 95. https://doi.org/10.1186/s12864-020-07349-5

Wang, Q., Qi, R., Wang, J., Huang, W., Wu, Y., Huang, X., Yang, F., & Huang, J. (2017). Diferential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 618, 49–56. https://doi.org/10.1016/j.gene.2017.04.013

Wang, Y., Liu, X., Hou, L., Wu, W., Zhao, S., & Xiong, Y. (2015). Fibroblast growth factor 21 suppresses adipogenesis in pig intramuscular fat cells. International Journal of Molecular Sciences, 17(1), 11. https://doi.org/10.3390/ijms17010011

Wong, B. H., Mei, D., Lin Chua, G., Galam, D. L., Wenk, M. R., Torta, F., & Silver, D. L. (2022). The lipid transporter Mfsd2a maintains pulmonary surfactant homeostasis. Journal of Biological Chemistry, 298(3), 101709. https://doi.org/10.1016/j.jbc.2022.101709

Zhang, J., Zhao, D., & Yi, D. (2019). Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus. Scientific Reports, 9, 19798. https://doi.org/10.1038/s41598-019-56391-1

Published

2024-06-13

How to Cite

Lemus-Flores, C., Bugarín-Prado, J. O., Lemus-Avalos, G., & Loeza-Concha, H. (2024). Gene expression in Longissimus dorsi and liver in two stages of growth in pigs. Agronomía Mesoamericana, 57540. https://doi.org/10.15517/am.2024.57540

Issue

Section

Articles