Gene expression in Longissimus dorsi and liver in two stages of growth in pigs
DOI:
https://doi.org/10.15517/am.2024.57540Keywords:
cromosome, transcriptome, DESeq2, methodAbstract
Introduction. Gene expression varies in relation to the physiological stage of the pig and the nutritional source, and that it differs between muscle and liver. Objective. To identify genes with differential gene expression in pig biological processes in Longissimus dorsi and liver tissues, by means of transcriptome analysis, during growth (55 ± 1.05 kg) and final fattening (101 ± 7.8 kg) stages. Materials and methods. The study was conducted at the Academic Unit of Agriculture of the Universidad Autónoma de Nayarit, Mexico, during the summer of 2019. A total of twelve samples were considered, three from Longissimus dorsi muscle and three from liver per stage, for RNA extraction and sequencing. With the DESeq2 method, the gene expression of the Log2FC was obtained differentially for the growth group vs. final fattening of Longissimus dorsi and liver, and the biological function of the differentially expressed genes was identified. Results. The largest number of genes with differential gene expression was identified in the liver and on chromosome 6 in both Longissimus dorsi and liver. In Longissimus dorsi from the growth group, the genes FUT1, SESN2 and FGF21, associated with growth, were identified with high expression. Genes with low expression, such as NR4A3, PDK4, PER1 and PTPRO, involved in immune system processes and circadian rhythm, were also identified. In the liver of the growth group, the genes IHH and MYL7 were identified with high expression, while genes with low expression, including MFSD2A, LIPG, THBS1, TGFB2, LTF and APOA4, were identified as those most involved in biological processes. Conclusions. In Longissimus dorsi of the growth group, the genes were related to growth, while in the final fattening group, they were associated with immunity, growth and meat quality. In the liver of the growth group, the genes were related to growth, whereas in the final fattening group, they were associated with immunity, growth, nutrient and lipid metabolism, lipoproteins and detoxification.
Downloads
References
Albuquerque, A., Óvilo, C., Núñez, Y., Benítez, R., López-García, A., García, F., Félix, M. R., Laranjo, M., Charmeca, R., & Martins, J. M. (2020). Comparative transcriptomic analysis of subcutaneous adipose tissue from local pig breeds. Genes, 11(4), Article 422. https://doi.org/10.3390/genes11040422
Aleksander, S. A., Balhoff, J., Carbono, S., Cereza, J. M., Drabkin, H. J., Ebert, D., Feuermann, M., Gaudet, P., Harris, N. L., Hill, D. P., Lee, R., Mi, H., Moxón, S., Mungall, C., Muruganugan, A., Mushayahama, T., Sternberg, P., Thomas, P., Van Auken, K., … Westerfield, M. (2023). The gene ontology knowledgebase in 2023. Genetics, 224(1), Article iyad031. https://doi.org/10.1093/genetics/iyad031
Benítez, R., Núñez, Y., Ayuso, M., Isabel, B., Fernández-Barroso, M. A., de Mercado, E., Gómez-Izquierdo, E., García-Casco, J. M., López-Bote, C., & Óvilo, C. (2021). Changes in biceps femoris transcriptome along growth in Iberian pigs fed different energy sources and comparative analysis with Duroc breed. Animals, 11, Article 3505. https://doi.org/10.3390/ani11123505
Benítez, R., Núñez, Y., Fernández, A., Isabel, B., Fernández, A. I., Rodríguez, C., Barragán, D., Martín-Palomino, P., López-Bote, C., Silió, L., & Óvilo, C. (2015). Effects of dietary fat saturation on fatty acid composition and gene transcription in different tissues of Iberian pigs. Meat Science, 102, 59–68. https://doi.org/10.1016/j.meatsci.2014.12.005
Centro Nacional de Información Biotecnológica. (2023). BLAST®. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=RefseqGene
Fergal, J. M., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A., Barnes, S., Becker, A., Bennet, R., Berry, A., Bhai, J., Kaur, B. S., Bignell, A., Boddu, S., Branco Lins, P. R., Brooks, L., Budhanuru Ramadaju, S., Charkhchi, M., Cockburn, A., Da Rin Fioreto, L, … Flicek, P. (2023). Ensembl 2023. Nucleic Acids Research, 51(1), 933–941. https://doi.org/10.1093/nar/gkac958
Figueiredo Cardoso, T., Quintanilla, R., Tibau, J., Gil, M., Marmol-Sánchez, E., González-Rodríguez, O., González-Prendes, R., & Amills, M. (2017). Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle. BMC Genomics, 18(1), Article 603. https://doi.org/10.1186/s12864-017-3986-x
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931
Hesselager, M. O., Everest-Dass, A. V., Thaysen-Andersen, M., Bendixen, E., & Packer, N. H. (2016). FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa. Glycobiology, 26(6), 607–622. https://doi.org/10.1093/glycob/cww009
Jiménez-Jacinto, V., Sanchez-Flores, A., & Vega-Alvarado, L. (2019). Integrative differential expression analysis for multiple experiments (IDEAMEX): a web server tool for integrated RNA-Seq data analysis. Frontiers in Genetics, 11, Article 279. https://doi.org/10.3389/fgene.2019.00279
Lemus-Flores, C., Alonso-Morales, R., Toledo-Alvarado, H., Sansor-Nah, R., Burgos-Paz, W., & Dzib-Cauich, D. (2020). Diversidad genética y estructura poblacional del cerdo negro lampiño de Yucatán usando chip SNP50. Abanico Veterinario, 10, 1–12. http://dx.doi.org/10.21929/abavet2020.10
Love, M. I., Huber, W., & Anders, A. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, Article 550. https://doi.org/10.1186/s13059-014-0550-8
Malgwi, I. H., Halas, V., Grünvald, P., Schiavon, S., & Jócsák, I. (2022). Genes related to fat metabolism in pigs and intramuscular fat content of pork: a focus on nutrigenetics and nutrigenomics. Animals, 12(2), Article 150. https://doi.org/10.3390/ani12020150
Muñoz, M., Fernández-Barroso, M. A., López-García, A., Caraballo, C., Nuñez, Y., Óvilo, C., González, E., & García-Casco, J. M. (2021). Consequences of a low protein diet on the liver and Longissimus dorsi transcriptome of Duroc × Iberian crossbred pigs. Animal, 15(12), Article 100408. https://doi.org/10.1016/j.animal.2021.100408
Muñoz, M., García-Casco, J. M., Caraballo, C., Fernández-Barroso, M. A., Sánchez-Esquiliche, F., Gómez, F., Rodríguez, M. C., & Silió, L. (2018). Identification of candidate genes and regulatory factors underlying intramuscular fat content through Longissimus dorsi transcriptome analyses in heavy Iberian pigs. Frontiers in Genetics, 9, Article 608. https://doi.org/10.3389/fgene.2018.00608
National Research Council. (2012). Nutrient requirements of swine. National Research Council. https://doi.org/10.17226/13298
Núñez, Y., Radović, Č., Savić, R., García-Casco, J. M., Čandek-Potokar, M., Benítez, R., Radojković, D., Lukić, M., Gogić, M., Muñoz, M., Fontanesi, L., & Óvilo, C. (2021). Muscle transcriptome analysis reveals molecular pathways related to oxidative phosphorylation, antioxidant defense, fatness and growth in Mangalitsa and Moravka pigs. Animals, 11, Article 844. https://doi.org/10.3390/ani11030844
Óvilo, C., Benítez, R., Fernández, A., Isabel, B., Núñez, Y., Fernández, A. I., Rodríguez, C., Daza, A., Silió, L., & López-Bote, C. (2014). Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs. Journal of Animal Science, 92, 939–954. https://doi.org/10.2527/jas.2013-6988
Puig-Oliveras, A., Revilla, M., Castelló, A., Fernández, A. I., Folch, J. M., & Ballester, M. (2016). Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6, Article 31803. https://doi.org/10.1038/srep31803
Sanger Institute. (n. d.). Pig genome. Retrieved November 21, 2020 from https://www.sanger.ac.uk/data/pig-genome/
Shang-Qiao, S., Wei-wei, M., Su-Xian, Z., Chao-Long, Z., Jin, Y., Cui-Cui, S., & Zong-Qiang, S. (2019). Transcriptome analysis of differential gene expression in the Longissimus dorsi muscle from Debao and landrace pigs based on RNA-sequencing. Bioscience Reports, 39(12), 1–23. https://doi.org/10.1042/BSR20192144
Tamiyakul, H., Kemter, E., Kösters, M., Ebner, S., Blutke, A., Klymiuk, N., Flenkenthaler, F., Wolf, E., Arnold, G. J., & Fröhlich, T. (2020). Progressive proteome changes in the myocardium of a pig model for Duchenne muscular dystrophy. iScience, 23(9), Article 101516. https://doi.org/10.1016/j.isci.2020.101516
Tao, X., Liang, Y., Yang, X., Pang, J., Zhong, Z., Chen, X., & Lu, X. (2017). Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition. PLoS ONE, 12(9), Article e0184120. https://doi.org/10.1371/journal.pone.0184120
The Human Gene Database. (n. d.). IHH Gene - Indian hedgehog signaling molecule. Retrieved October 4, 2023 from https://www.genecards.org/cgi-bin/carddisp.pl?gene=IHH
The Human Protein Atlas. (n. d.). The open access resource for human proteins. Retrieved February 2, 2023 from https://www.proteinatlas.org/
Wang, Y., Liu, X., Hou, L., Wu, W., Zhao, S., & Xiong, Y. (2015). Fibroblast growth factor 21 suppresses adipogenesis in pig intramuscular fat cells. International Journal of Molecular Sciences, 17(1), Article 11. https://doi.org/10.3390/ijms17010011
Wang, Q., Qi, R., Wang, J., Huang, W., Wu, Y., Huang, X., Yang, F., & Huang, J. (2017). Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 618, 49–56. https://doi.org/10.1016/j.gene.2017.04.013
Wang, H., Wang, J., Dan-Dan, Y., Zong-Li, I., Yong-Qing, Z., & Chen, W. (2020). Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs. Asian-Australasian Journal of Animal Science, 33(3), 390–397. https://doi.org/10.5713/ajas.18.0225
Wang, L., Zhong-Yin, Z., Zhang, T., Zang, L., Hou, X., Yan, X., & Wang, L. (2021). IRLnc: a novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genomics, 22, Article 95. https://doi.org/10.1186/s12864-020-07349-5
Wilkinson, J. M., Sargent, C. A., & Galina-Pantoja, L. (2010). Perfiles de expresión génica en los pulmones de cerdos con diferentes susceptibilidades a la enfermedad de Glässer. BMC Genomics, 11, artículo 455. https://doi.org/10.1186/1471-2164-11-455
Wong, B. H., Mei, D., Lin Chua, G., Galam, D. L., Wenk, M. R., Torta, F., & Silver, D. L. (2022). The lipid transporter Mfsd2a maintains pulmonary surfactant homeostasis. Journal of Biological Chemistry, 298(3), Article 101709. https://doi.org/10.1016/j.jbc.2022.101709
Zhang, J., Zhao, D., & Yi, D. (2019). Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus. Scientific Reports, 9, Article 19798. https://doi.org/10.1038/s41598-019-56391-1
Zymo Research Corporation (2019). Kit de purificación de ADN. https://zymoresearch.eu/pages/dna-learning-center
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Clemente Lemus-Flores, Job Oswaldo Bugarín-Prado, Gilberto Lemus-Avalos, Henry Loeza-Concha
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).