Jasmonate and salicylic sprays improve cherry tomato fruit productivity and quality in unheated greenhouses

Authors

DOI:

https://doi.org/10.15517/am.2024.58254

Keywords:

Solanum lycopersicum, phytohormones, plant growth, breeding, genotype, total soluble solid

Abstract

Introduction. Arable regions often lack sufficient soil nutrients, which means that fertilizers must be used. However, using fertilizers excessively can harm the environment, human health and food safety. Natural growth regulators derived from plants are environmentally friendly and reasonably priced. The phytohormones methyl jasmonate (MeJA) and salicylic acid (SA) are crucial for enhancing plant biomass, quality, productivity and resistance to environmental stresses. Objective. To evaluate the foliar effect of MeJA and SA on fruit quality and production of colorful tomato cultivars under greenhouse conditions. Materials and methods. The trial was conducted at the University of Diyala, Iraq, from December 1, 2022, to June 5, 2023. Foliar applications of 0 mg/L, 200 mg/L SA and 200 mg/L MeJA were evaluated to determine their effects on fruit quality and production of colorful indeterminate cherry tomato cultivars: LA4013, LA353, LA2921, LA3899 and IQ2. A randomized complete block design was used, with each treatment having three replicates. Results. The cultivar IQ2 produced the heaviest fruit (82.13 g), the highest plant yield (4.56 kg/plant), the highest total yield (4.56 t/house) and the highest titratable acidity (0.62 %). The cultivar LA4013 had the highest fruit number (612.88 fruits/plant) and the highest total soluble solids (2.933 %). The foliar application of 200 mg/L SA resulted in the highest chlorophyll index (36.68 SPAD), the highest fruit number (373.73 fruits/plant), the highest plant yield (3.15 kg/plant) and the highest total yield (3.93 t/house). Conclusion. Considering all variables together, the best-performing genotypes were IQ2 and LA4013, which were superior to other genotypes in quality and yield trials. The foliar application of 200 mg/L SA improved both yield and quality of cherry tomatoes under greenhouse conditions.

Downloads

Download data is not yet available.

References

Abood, M. A., Al-Shammari, A. M. A., & Hamdi, G. J. (2019). Foliar application of tecamin max® to alleviate water deficit effects on yield and water-use efficiency (WUE) of okra. Acta Scientiarum Polonorum Hortorum Cultus, 18(2), 15–20. https://doi.org/10.24326/asphc.2019.2.2

Ali, M., & Ohri, P. (2023). Deciphering the synergistic effect of Jasmonic acid and Spermine in mitigating root-knot nematode stress in tomato plants through enhancing growth and activity of antioxidant enzymes. South African Journal of Botany, 161, 21–35. https://doi.org/10.1016/j.sajb.2023.07.063

Al-Mfargy, O. K. A., & Al-Juwari, M. S. M. (2023). Estimation of hybrid vigor for flowering and yield cherry tomato hybrids. IOP Conference Series, 1158(4), Article 042066. https://doi.org/10.1088/1755-1315/1158/4/042066

Al-Obaidi, A. R. H. H. (2022). Genetic analysis of individual hybrids the development and evaluation of triple hybrids for the tomato crop [Doctoral dissertation, University of Diyala]. ResearchGate. https://doi.org/10.13140/RG.2.2.11768.52484

Al-Shammari, A. M. A., & Hamdi, G. J. (2021). Genetic diversity analysis and DNA fingerprinting of tomato breeding lines using SSR markers. Agraarteadus, 32(1), 1–7. https://doi.org/10.15159/jas.21.13

Al-Shammari, A. M. A., & Hamdi, G. J. (2022). Effect of water deficit on the growth and yield on different genotypes of tomato in semi-arid climate condition. Agraarteadus, 33(2), 389–395. https://doi.org/10.15159/jas.22.29

Al-Shammari, A. M. A., & Hamdi, G. J. (2023). Genotype and foliar fertilization affect growth, production and accumulation of anthocyanin in red cabbage. International Journal of Vegetable Science, 29(4), 337–347. https://doi.org/10.1080/19315260.2023.2219672

AL-Surhanee, A. A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933–2941. https://doi.org/10.1016/j.sjbs.2022.01.020

Altaf, M. A., Shahid, R., Ren, M.-X., Naz, S., Altaf, M. M., Khan, L. U., Tiwari, R. K., Lal, M. K., Shahid, M. A., Kumar, R., Nawaz, M. A., Jahan, M. S., Jan, B. L., & Ahmad, P. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11(2), Article 309. https://doi.org/10.3390/antiox11020309

Alwan, O. K., Al-Zuhairy, N. S. A., & Badri, A. N. (2023). Estimation of some genetic parameters and field evaluation for pure lines of cherry tomato. IOP Conference Series, 1252(1), Article 012096. https://doi.org/10.1088/1755-1315/1252/1/012096

Alwan, O. K., Hamdi, G. J., & Maleh, R. A. (2023). Methyl jasmonate and type of fertilization affect growth, production and accumulation of sulforaphane in black radish taproot. International Journal of Vegetable Science, 29(2), 178–194. https://doi.org/10.1080/19315260.2023.2170302

Alwan, O. K., & Mohammed, M. S. (2023). Study of combining ability analysis in cherry tomato (Solanum lycopersicum var. cerasiforme). Diyala Agricultural Sciences Journal, 15(1), 49–55. https://doi.org/10.52951/dasj.23150106

Arshad, A., Mushtaq, N., Sajjad, M., Ahad, A., Ilyas, M., & Gul, A. (2023). Role of exogenous phytohormones in mitigating stress in plants. In M. Ozturk, R. A. Bhat, M. Ashraf, F. M. P. Tonelli, B. T. Unal, & G. H. Dar (Eds.), Phytohormones and Stress Responsive Secondary Metabolites (pp. 111–131). Elsevier. https://doi.org/10.1016/B978-0-323-91883-1.00020-6

Bader, B. R., Abood, M. A., Aldulaimy, S. E. H., Al-Mehmdya, S. M. H., & Hamdi, G. J. (2020). Effect of water deficit and foliar application of amino acids on growth and yield of eggplant irrigated by two drip systems under greenhouse conditions. Agraarteadus, 31(2), 131–138. https://doi.org/10.15159/jas.20.20

Baek, M. W., Choi, H. R., Yun Jae, L., Kang, H. M., Lee, O. H., Jeong, C. S., & Tilahun, S. (2021). Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy, 11(11), Article 2293. https://doi.org/10.3390/agronomy11112293

Baninaiem, E., Mirzaaliandastjerdi, A. M., Rastegar, S., & Abbaszade, K. H. (2016). Effect of pre- and postharvest salicylic acid treatment on quality characteristics of tomato during cold storage. Advances in Horticultural Science, 30(3), 183–192. http://dx.doi.org/10.13128/ahs-20281

Borysiuk, K., Ostaszewska-Bugajska, M., Kryzheuskaya, K. Gardeström, P., & Bożena Szal, B. (2022). Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. Plant Cell Reports, 41(12), 2393–2413. https://doi.org/10.1007/s00299-022-02931-5

Chakma, R., Biswas, A., Saekong, P., Ullah, H., & Datta, A. (2021). Foliar application and seed priming of salicylic acid affect growth, fruit yield, and quality of grape tomato under drought stress. Scientia Horticulturae, 280, Article 109904. https://doi.org/10.1016/j.scienta.2021.109904

Chen, R. Y., Jiang, W., Fu, S. F., & Chou, J. Y. (2022). Screening, evaluation, and selection of yeasts with high ammonia production ability under nitrogen free condition from the cherry tomato (Lycopersicon esculentum var. cerasiforme) rhizosphere as a potential bio-fertilizer. Rhizosphere, 23, Article 100580. https://doi.org/10.1016/j.rhisph.2022.100580

Davies, P. J. (1995). The plant hormones: their nature, occurrence, and functions. In P. J. Davies (Ed.), Plant hormones: physiology, biochemistry and molecular biology (pp. 1–12). Springer. https://doi.org/10.1007/978-94-011-0473-9_1

Ding, F., Wang, C., Xu, N., Wang, M., & Zhang, S. (2021). Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Scientia Horticulturae, 288, Article 110373. https://doi.org/10.1016/j.scienta.2021.110373

Environmental Protection Agency. (2013). Methyl jasmonate; exemption from the requirement of a tolerance. Federal Register, 78, 22789–22794.

Fan, S., Wu, H., Gong, H., & Guo, J. (2022). The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Scientia Horticulturae, 300, Article 111092. https://doi.org/10.1016/j.scienta.2022.111092

Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 153–188. https://doi.org/10.1051/agro:2008021

García-Caparrós, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., & Lao, M. T. (2021). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review, 87, 421–466. https://doi.org/10.1007/s12229-020-09231-1

Gerszberg, A. & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83(2), 175–198. https://doi.org/10.1007/s10725-017-0251-x

Godoy, A. J. V., Grisales, S. O., Cabrera, F. A. V., Villareal, M. D. C. S., Guzmán, D. G. G., & Villareal, F. A. S. (2022). Agronomic evaluation of chonto tomato (Solanum lycopersicum Mill.) lines of determinate growth. Agronomía Colombiana, 40(3), 336–43. https://doi.org/10.15446/agron.colomb.v40n3.103518

Haidar, A. (2022). Evaluation of various tomato cultivars for some physiochemical characteristics influencing flavor and nutritive properties. ProEnvironment Promediu, 15(50), 264–277.

Hamdi, G. J. (2017). Effect of perlite in reducing water stress for three genotypes of tomato [Master’s thesis, University of Diyala]. RGnowledge. https://www.researchgate.net/publication/323142482_Effect_of_perlite_in_reducing_water_stress_for_three_genotypes_of_tomato

Hamdi, G. J. (2022). Estimate the genetic distance and genetic parameters of growth characteristics and yield of tomato using half diallel cross under water stress [Doctoral dissertation, University of Diyala]. RGnowledge. https://doi.org/10.13140/RG.2.2.15131.75049

Kaya, C., Ugurlar, F., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2023). Exploring the synergistic effects of melatonin and salicylic acid in enhancing drought stress tolerance in tomato plants through fine-tuning oxidative-nitrosative processes and methylglyoxal metabolism. Scientia Horticulturae, 321, Article 112368. https://doi.org/10.1016/j.scienta.2023.112368

Khalloufi, M., Martínez-Andújar, C., Lachaâl, M., Karray-Bouraoui, N., Pérez-Alfocea, F., & Alfonso-Albacete, A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. Journal of Plant Physiology, 214, 134–144. https://doi.org/10.1016/j.jplph.2017.04.012

Li, S., Huan, C., Liu, Y., Zheng, X., & Bi, Y. (2022). Melatonin induces improved protection against Botrytis cinerea in cherry tomato fruit by activating salicylic acid signaling pathway. Scientia Horticulturae, 304, Article 111299. https://doi.org/10.1016/j.scienta.2022.111299

Mahmood, A. K., Sulaiman, S. M., & Arkwazee, H. A. H. (2021). Evaluation of yield and fruit quality of newly introduced cherry tomato cultivars under high tunnel conditions. Euphrates Journal of Agriculture Science, 13(4), 35–45.

Manan, A., Ayyub, C. M., Pervez, A., & Ahmad, R. (2016). Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pakistan Journal of Agricultural Sciences, 53(1), 35–41. https://doi.org/10.21162/PAKJAS/16.4441

Melo, M. F. (2022). Effect of salicylic and jasmonic acid on cherry tomato growth, physiology, and fruit quality under saline stress [Unpublished doctoral dissertation, Universidade Federal Rural do Semi-Árido].

Mohamed, R. A., Abdelbaset, A. K., & Abd-Elkader, D. Y. (2017). Salicylic acid effects on growth, yield, and fruit quality of strawberry cultivars. Journal of Medicinally Active Plants, 6(2), 1–11.

Omar, D. G., AL-Mafargy, O. K., & Mohammed, H. A. (2020). Effect of spraying salicylic acid and zinc element on cherry tomato Solanum lycopericum L. characteristics under greenhouse conditions. Syrian Journal of Agricultural Research, 7(4), 1–12.

Ostrowska, A., Gawliński, S., & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties. A catalogue. Institute of Environmental Protection-National Research Institute.

Özden, E., & Kulak, M. (2023). Salicylic acid biosynthesis for hormone crosstalk and plant development. In A. Husen, & W. Zhang (Eds.), Hormonal cross-talk, plant defense and development (pp. 61–74). Elsevier. https://doi.org/10.1016/B978-0-323-95375-7.00006-9

Ozturk, M., & Unal, B. T. (Eds.). (2023). Exogenous application of phytohormones and phytometabolites to plants to alleviate the effects of drought stress. In M. Ozturk, R. A. Bhat, M. Ashraf, F. M. P. Tonelli, B. T. Unal, & G. H. Dar (Eds.), Phytohormones and stress responsive secondary metabolites (pp. 1–12). Elsevier. https://doi.org/10.1016/B978-0-323-91883-1.00001-2

Pascual, L. S., Mittler, R., Sinha, R., Peláez-Vico, M. A., López-Climent, M. F., Vives-Peris, V., Gómez-Cadenas, A., & Zandalinas, S. I. (2023). Jasmonic acid is required for tomato acclimation to multifactorial stress combination. Environmental and Experimental Botany, 213, Article 105425. https://doi.org/10.1016/j.envexpbot.2023.105425

Qadir, A., Anjum, M. A., Nawaz, A., Ejaz, S., Altaf, M. A., Shahid, R., & Hassan, A. (2019). Growth of cherry tomato in response to salicylic acid and glycinebetaine under water stress condition. Middle East Journal of Agriculture Research, 8(3), 762–775.

Qin, C., Lian, H., Alqahtani, F. M., & Ahanger, M. A. (2024). Chromium mediated damaging effects on growth, nitrogen metabolism and chlorophyll synthesis in tomato can be alleviated by foliar application of melatonin and jasmonic acid priming. Scientia Horticulturae, 323, Article 112494. https://doi.org/10.1016/j.scienta.2023.112494

Ranganna, S. (1977). Manual of analysis fruits and vegetables. Tata-McGraw Hill.

Raza, A., Charagh, S., Najafi-Kakavand, S., Abbas, S., Shoaib, Y., Anwar, S., Sharifi, S., Lu, G., & Siddique, K. H. (2023). Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress, 8, Article 100152. https://doi.org/10.1016/j.stress.2023.100152

Salman, A. D., & Sadik, S. (2016). Influerce of foliar application of agrosol and enraizal on the qualitative characters of the fruits of cherry tomato grown under open field and plastic house conditions. Iraqi Journal of Agricultural Sciences, 47(2), 495–505. https://doi.org/10.36103/ijas.v47i2.594

Sarinana-Aldaco, O., Sanchez-Chavez, E., Fortis-Hernandez, M., González-Fuentes, J. A., Moreno-Resendez, A., Rojas-Duarte, A., & Preciado-Rangel, P. (2020). Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 882–892. https://doi.org/10.15835/nbha48211914

Silva, A. A. R., Lima, G. S., Azevedo, C. A. V., Veloso, L. L. S. A., Lacerda, C. N., Gheyi, H. R., Pereira, W. E., Silva, V. R., & Soares, L. A. A. (2022). Methods of application of salicylic acid as attenuator of salt stress in cherry tomato. Brazilian Journal of Biology, 82, Article e265069. https://doi.org/10.1590/1519-6984.265069

Simonne, A. H., Fuzeré, J. M., Simonne, E., Hochmuth, R. C., & Marshall, M. R. (2007). Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. Journal of Plant Nutrition, 30(6), 927–935. https://doi.org/10.1080/15226510701375465

Simonne, E., Hochmuth, R., Hochmuth, G., & Studstill, D. W. (2008). Development of a nitrogen fertigation program for grape tomato. Journal of Plant Nutrition, 31(12), 2145–2154. https://doi.org/10.1080/01904160802460102

Singhal, P., Jan, A. T., Azam, M., & Haq, Q. M. R. (2016). Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Frontiers in Life Science, 9, 52–63. https://doi.org/10.1080/21553769.2015.1077478

Tokas, J., Kumar, N., Punia, H., Dhankar, S. K., Yashveer, S., Singal, H. R., & Sheokand, R. N. (2023). Response of antioxidant system to postharvest salicylic acid treatment in tomato (Solanum lycopersicum L.) fruit stored at ambient temperature. Journal of Agricultural Science and Technology, 25(1), 155–169. https://doi.org/10.52547/jast.25.1.155

Tonelli, F. M. P., Tonelli, F. C. P., & Lemos, M. S. (2023). Exogenous application of phytohormones to increase plant performance under stress. In M. Ozturk, R. A. Bhat, M. Ashraf, F. M. P. Tonelli, B. T. Unal, & G. H. Dar (Eds.), Phytohormones and Stress Responsive Secondary Metabolites (pp. 275–285). Elsevier. https://doi.org/10.1016/B978-0-323-91883-1.00004-8

Ullah, A., Ali, S., & Shah, S. M. (2019). Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. International Journal of Biosciences, 14, 309–316. http://dx.doi.org/10.12692/ijb/14.1.309-316

Wang, M., Zhang, S., & Ding, F. (2020). Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants, 9(3), Article 218. https://doi.org/10.3390/antiox9030218

Wang, P., Sun, S., Liu, K., Peng, R., Li, N., Hu, B., Wang, L., Wang, H., Afzal, A. J., & Geng, X. (2022). Physiological and transcriptomic analyses revealed gene networks involved in heightened resistance against tomato yellow leaf curl virus infection in salicylic acid and jasmonic acid treated tomato plants. Frontiers in Microbiology, 13, Article 970139. https://doi.org/10.3389/fmicb.2022.970139

Yu, G. B., Chen, R. N., Chen, Q. S., Chen, F. Q., Liu, H. L., Ren, C. Y., Zhang, Y. X., Yang, F. J., & Wei, J. P. (2022). Jasmonic acid promotes glutathione assisted degradation of chlorothalonil during tomato growth. Ecotoxicology and Environmental Safety, 233, Article 113296. https://doi.org/10.1016/j.ecoenv.2022.113296

Zhang, C., & Huang, Z. (2013). Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Scientia Horticulturae, 159, 172–177. https://doi.org/10.1016/j.scienta.2013.05.013

Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324. https://doi.org/10.1016/j.cell.2016.08.029

Published

2024-09-23

How to Cite

Essa, B. A., & Alwan, O. K. (2024). Jasmonate and salicylic sprays improve cherry tomato fruit productivity and quality in unheated greenhouses. Agronomía Mesoamericana, 36, 58254. https://doi.org/10.15517/am.2024.58254