Uso de ácidos orgánicos para la reducción de microorganismos en repollo (Brassica oleracea) y zanahoria (Daucus carota) rallados

Autores/as

DOI:

https://doi.org/10.15517/am.2024.59834

Palabras clave:

ácido cítrico, ácido láctico, desinfección, Escherichia coli, Listeria monocytogenes

Resumen

Introducción. En los últimos años se han buscado opciones de desinfección para los vegetales frescos y mínimamente procesados. Alternativas como el uso de ácidos orgánicos, pueden reducir microorganismos en los alimentos. Objetivo. Evaluar el uso de ácido cítrico y láctico en diferentes concentraciones para la reducción microbiológica de Escherichia coli y Listeria monocytogenes en repollo y zanahoria rallados. Materiales y métodos. El trabajo se realizó en San José, Costa Rica, durante los meses de setiembre a noviembre de 2023. Se ralló repollo y zanahoria, se inocularon con E. coli y L. monocytogenes y se desinfectaron con ácido láctico y cítrico a concentraciones de 5, 10 y 20 g l-1 durante 5 min. Se determinó la reducción logarítmica posterior a la desinfección y se evaluó con contrastes ortogonales y pruebas de Bonferroni la contribución de los ácidos a la reducción con respecto al control en agua, así como diferencias en las reducciones entre ambos ácidos y el efecto de la concentración. Resultados. Se determinaron en zanahoria y repollo reducciones de E. coli entre 2 y 5 log UFC/g. Las mayores reducciones en general se observaron a 20 g l-1 en comparación con 5 g l-1, para el ácido láctico en comparación con el cítrico. La determinación en zanahoria para L. monocytogenes no fue posible, sin embargo, en repollo se obtuvieron valores entre 1,2 y 2,4 log UFC/g con las mayores reducciones a 20 g l-1 en comparación con 5 g l-1 y para el ácido láctico en comparación con el cítrico. Conclusiones. En las condiciones estudiadas de concentración y tiempo fue posible utilizar ácido láctico y ácido cítrico para implementar procesos de desinfección de repollo y zanahoria rallados y lograr reducciones de al menos 2 log UFC/g.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams, M. R., Moss, M. O., & McClure, P. (2016). Food microbiology (4th ed.). The Royal Society of Chemistry.

Akbas, M. Y., & Ölmez, H. (2007). Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Letters in Applied Microbiology, 44(6), 619–624. https://doi.org/10.1111/J.1472-765X.2007.02127.X

Alenyorege, E. A., Ma, H., Ayim, I., Aheto, J. H., Hong, C., & Zhou, C. (2019). Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT, 101, 410–418. https://doi.org/10.1016/j.lwt.2018.11.048

Amrutha, B., Sundar, K., & Shetty, P. H. (2017). Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microbial pathogenesis, 111, 156–162. https://doi.org/10.1016/j.micpath.2017.08.042

Bae, Y. M., Choi, N. Y., Heu, S., Kang, D. H., & Lee, S. Y. (2011). Inhibitory effects of organic acids combined with modified atmosphere packaging on foodborne pathogens on cabbage. Journal of the Korean Society for Applied Biological Chemistry, 54(6), 993–997. https://doi.org/10.1007/BF03253191

Batt, C. (2014). ESCHERICHIA COLI | Escherichia coli. In C. A. Batt, & M. Tortorello (Eds.), Encyclopedia of food microbiology (2nd ed., pp. 688–694). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00100-2

Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1), 82–90. https://doi.org/10.1016/J.FOODCONT.2012.05.073

Beuchat, L. R., Farber, J. M., Harris, L. J., Parish, M. E., Suslow, T. V., Busta, F. F., & Garrett, E. H. (2001). Standardization of a method to determine the efficacy of sanitizers in inactivating human pathogenic microorganisms on raw fruits and vegetables. Journal of Food Protection, 64(7), 1079–1084. https://doi.org/10.4315/0362-028x-64.7.1079

Bhilwadikar, T., Pounraj, S., Manivannan, S., Rastogi, N. K., & Negi, P. S. (2019). Decontamination of microorganisms and pesticides from fresh fruits and vegetables: a comprehensive review from common household processes to modern techniques. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1000–1038. https://doi.org/10.1111/1541-4337.12453

Bolten, S., Mowery, J., Gu, G., Redding, M., Kroft, B., Luo, Y., & Nou, X. (2023). Listeria monocytogenes loss of cultivability on carrot is associated with the formation of mesosome-like structures. International Journal of Food Microbiology, 390, Article 110121. https://doi.org/10.1016/j.ijfoodmicro.2023.110121

Botondi, R., Barone, M., & Grasso, C. (2021). A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods, 10(4), Article 748. https://doi.org/10.3390/FOODS10040748

Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in microbiology, 10, Article 2667. https://doi.org/10.3389/FMICB.2019.02667

Chang, J. (2015). Food safety research for fresh produce [Master of science thesis, Purdue University]. Purdue Open Access Thesis. https://docs.lib.purdue.edu/open_access_theses/1098

Chinchkar, A. V., Singh, A., Singh, S. V., Acharya, A. M., & Kamble, M. G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46, Article e16495. https://doi.org/10.1111/jfpp.16495

Coban, H. B. (2020). Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess and Biosystems Engineering, 43, 569–591. https://doi.org/10.1007/s00449-019-02256-w

Cruz Mendoza, I., Ortiz Luna, E., Dreher Pozo, M., Villavicencio Vásquez, M., Coello Montoya, D., Chuchuca Moran, G., Galarza Romero, L., Yépez, X., Salazar, R., Romero-Peña, M., & Coronel León, J. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT, 165, Article e113714. https://doi.org/10.1016/j.lwt.2022.113714

da Silva, N., Taniwaki, M., Junqueira, V., Silveira, N., Okazaki, M., & Romeiro Gomes, R. (2018). Microbiological examination methods of food and water: A laboratory manual (2nd ed.). CRC Press. https://doi.org/10.1201/9781315165011

Danyluk, M. D., Fatica, M. K., Brar, P. K., McEgan, R., Valadez, A. M., Schneider, K. R., & Trinetta, V. (2015). 50. Fruits and Vegetables. In Y. Salfinger, & L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 687–696). American Public Health Association. https://doi.org/10.2105/MBEF.0222.055

De Corato, U. (2019). The market of the minimally processed fresh produce needs of safer strategies for improving shelf life and quality: a critical overview of the traditional technologies. Open Access Journal of Agricultural Research, 4(1), Article 000216. http://doi.org/10.23880/oajar-16000216

Deng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633

do Prado Vilarin, S., Rocha Teixeira, T. M., Gonçalves Lima, C. M., Pamplona Pagnossa, J., Mendonça de Figueiredo, R., Cardoso Medeiros, U. B., & Ferreira Santana, R. (2020). Effect of sanitization on minimally processed cabbage (Brassica oleracea L.). Research, Society and Development, 9(6), Article e59963467. https://doi.org/10.33448/rsd-v9i6.3467

Erickson, M. C. (2019). Microbiological issues associated with fruits, vegetables, nuts, and grains. In M. P. Doyle, F. Diez-Gonzalez, & C. Hill (Eds.), Food Microbiology: Fundamentals and Frontiers (pp. 179–206). ASM Press. https://doi.org/10.1128/9781555819972.ch7

Ferreira Gomes, B. A., Silveira Alexandre, A. C., Vieira de Andrade, G. A., Pereira Zanzini, A., Araújo de Barros, H. E., dos Santos Ferraz e Silva, L. M., Aparecida Costa, P., & de Barros Vilas Boas, E. V. (2023). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 2: physical methods and global market outlook. Food Chemistry Advances, 2, Article e100304. https://doi.org/10.1016/j.focha.2023.100304

Giaouris, E., Chorianopoulos, N., & Nychas, G. J. (2014). Acquired acid adaptation of Listeria monocytogenes during its planktonic growth enhances subsequent survival of its sessile population to disinfection with natural organic compounds. Food Research International, 64, 896–900. https://doi.org/10.1016/j.foodres.2014.08.044

Jnani, D., & Ray, S. D. (2024). Escherichia coli. In P. Wexler (Ed.), Encyclopedia of toxicology (4th ed., pp 357–367). Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00190-1

Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control, 73, 1426–1444. https://doi.org/10.1016/j.foodcont.2016.11.010

Koseki, S., Yoshida, K., Kamitani, Y., & Itoh, K. (2003). Influence of inoculation method, spot inoculation site, and inoculation size on the efficacy of acidic electrolyzed water against pathogens on lettuce. Journal of Food Protection, 66(11), 2010–2016. https://doi.org/10.4315/0362-028x-66.11.2010

Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology, 6, Article 1227. https://doi.org/10.3389/fmicb.2015.01227

Lee, H. H., Hong, S. I., & Kim, D. (2014). Microbial reduction efficacy of various disinfection treatments on fresh-cut cabbage. Food Science and Nutrition, 2(5), 585–590. https://doi.org/10.1002/fsn3.138

Liu, C., Chen, C., Jiang, A., Zhang, Y., Zhao, Q., & Hu, W. (2021). Effects of aqueous ozone treatment on microbial growth, quality, and pesticide residue of fresh-cut cabbage. Food Science and Nutrition, 9(1), 52–61. https://doi.org/10.1002/FSN3.1870

Ma, T., Luo, J., Tian, C., Sun, X., Quan, M., Zheng, C., Kang, L., & Zhan, J. (2015). Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carrot L.) juice essential oil. Food Chemistry, 170, 394–400. https://doi.org/10.1016/j.foodchem.2014.08.018

Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf-life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23–38. https://doi.org/10.1016/j.tifs.2017.03.005

Meireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82, 71-85. https://doi.org/10.1016/J.FOODRES.2016.01.021

Noriega, E., Newman, J., Saggers, E., Robertson, J., Laca, A., Díaz, M., & Brocklehurst, T. M. (2010). Antilisterial activity of carrots: Effect of temperature and properties of different carrot fractions. Food Research International, 43(10), 2425–2431. https://doi.org/10.1016/j.foodres.2010.09.012

Park, S. H., Choi, M. R., Park, J. W., Park, K. H., Chung, M. S., Ryu, S., & Kang, D. H. (2011). Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. Journal of Food Science, 76(6), 293–298. https://doi.org/10.1111/J.1750-3841.2011.02205.X

Petri, E., Rodríguez, M., & García, S. (2015). Evaluation of combined disinfection methods for reducing Escherichia coli O157:H7 population on fresh-cut vegetables. International Journal of Environmental Research and Public Health, 12(8), 8678–8690. https://doi.org/10.3390/ijerph120808678

Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547

Petran, R. L., Grieme, L. E., & Foong-Cunningham, S. (2015). 6. Culture methods for enumeration of microorganisms. In Y. Salfinger, & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed.). American Public Health Association. https://doi.org/10.2105/MBEF.0222.011

Pounraj, S., Bhilwadikar, T., Manivannan, S., Rastogi, N. K., & Negi, P. S. (2021). Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. Journal of the Science of Food and Agriculture, 101(8), 3422–3428. https://doi.org/10.1002/JSFA.10972

Sagong, H. G., Lee, S. Y., Chang, P. S., Heu, S., Ryu, S., Choi, Y. J., & Kang, D. H. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145(1), 287–292. https://doi.org/10.1016/j.ijfoodmicro.2011.01.010

Sango, D. M., Abela, D., McElhatton, A., & Valdramidis, V. P. (2014). Assisted ultrasound applications for the production of safe foods. Journal of Applied Microbiology, 116(5), 1067–1083. https://doi.org/10.1111/JAM.12468

Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: a critical review. Foods, 10(3), Article 605. https://doi.org/10.3390/foods10030605

Silveira Alexandre, A. C., Ferreira Gomes, B. A., Nayara Duarte, G., Fabiane Piva, S., Barros Zauza, S., & de Barros Vilas Boas, E. V. (2022). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 1: fundamentals and chemical methods. Journal of Food Processing and Preservation, 46(8), Article e16757. https://doi.org/10.1111/jfpp.16757

Tzortzakis, N., & Chrysargyris, A. (2017). Postharvest ozone application for the preservation of fruits and vegetables. Food Reviews International, 33(3), 270–315. https://doi.org/10.1080/87559129.2016.1175015

Venkitanarayanan, K. S., Lin, C. M., Bailey, H., & Doyle, M. P. (2002). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. Journal of food protection, 65(1), 100–105. https://doi.org/10.4315/0362-028x-65.1.100

Wang, J., Wang, S., Sun, Y., Li, C., Li, Y., Zhang, Q., & Wu, Z. (2019). Reduction of Escherichia coli O157:H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC Advances, 9, 22636–22643. https://doi.org/10.1039/C9RA03544C

Wijayasinghe, R., Bogahawaththa, D., Huppertz, T., Chandrapala, J., & Vasiljevic, T. (2019). Influence of lactic, citric and phosphoric acids on the properties of concentrated lactose solutions. Food Chemistry, 293, 247–253. https://doi.org/10.1016/j.foodchem.2019.04.065

Wirtanen, G., & Salo, S. (2016). Chapter 5 - Biofilm risks. In H. Lelieveld, J. Holah, & D. Gabrić (Eds.), Handbook of hygiene control in the food industry (2nd ed., pp 55–79). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100155-4.00005-4

Yoon, J. H., & Lee, S. Y. (2018). Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Critical Reviews in Food Science and Nutrition, 58, 3189–3208. https://doi.org/10.1080/10408398.2017.1354813

Zhang, S., & Farber, J. M. (1996). The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiology, 13(4), 311–321. https://doi.org/10.1006/fmic.1996.0037

Publicado

2024-11-15

Cómo citar

Ruiz-Lobo, D., Davidovich-Young, G., Wong-González, E., & Ramakrishna-Loaiza, S. (2024). Uso de ácidos orgánicos para la reducción de microorganismos en repollo (Brassica oleracea) y zanahoria (Daucus carota) rallados. Agronomía Mesoamericana, 35(Especial 1), 59834. https://doi.org/10.15517/am.2024.59834