Development of a green drink with spirulina (Arthrospira sp.) using the experimental mixture design

Authors

DOI:

https://doi.org/10.15517/am.2024.60115

Keywords:

algal proteins, food analysis, food processing, innovation

Abstract

Introduction. There is a tendency to consume spirulina (Arthrospira sp.) due to its nutritional value and potential as a sustainable protein source. Spirulina has an intense flavor and odor that can be disliked by consumers, so it is convenient to use the experimental design of mixtures to optimize the formulation. Objective. To develop a prototype of a green beverage prototype with high nutritional value that incorporates spirulina as an ingredient, through the application of an experimental mixture design. Materials and methods. The research was carried out at Universidad de Costa Rica, Liberia campus, in Guanacaste, between July and December 2022. Eleven prototypes of a spirulina-based beverage were prepared, and a space-filling mixture design was applied with three factors (spirulina, sugar, and fruits/vegetables) and overall acceptability as the response variable. Acceptability was evaluated by a panel of 95 consumers, with the averages adjusted using the Scheffe polynomial model. The model equation was obtained using JMP16 software and validated by a panel of 27 consumers with five samples. Physicochemical analyses were conducted to determine the nutritional value of a selected beverage prototype. Results. The factors were found to influence product acceptability (p<0.05). The values of R2=0.97 and adjusted R2 -adj=0.96 indicated that the model fits the experimental data. Validation confirmed that the model reliably predicts overall acceptability. The formulation, which contains 2 % spirulina and a 300 mL serving, was characterized as low in sodium, a source of protein and magnesium, and rich in iron and vitamin C. Conclusions. It was possible to obtain a significant and adjusted mathematical model that manages to predict the liking of a beverage with spirulina. The developed prototype contains more spirulina and protein than similar beverages on the market.

Downloads

Download data is not yet available.

References

Abd El-Baky, H. H., & El Baroty, G. S. (2012). Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food & Function, 3, 381–388. https://doi.org/10.1039/c2fo10194g

Alfaro-Alfaro, A. E., Alpízar-Cambronero, V., Duarte-Rodríguez, A. I., Feng-Feng, J., Rosales-Leiva, C., & Mora-Román, J. J. (2020). C-ficocianinas: modulación del sistema inmune y su posible aplicación como terapia contra el cáncer. Tecnología en Marcha, 33(4), 125–139. https://doi.org/10.18845/tm.v33i4.4653

Association of Analytical Communities. (2023a). Official method 920.152. Protein in fruit products: Kjeldahl method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 37.1.35, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3388

Association of Analytical Communities. (2023b). Official Method 922.06. Fat in flour: Acid hydrolysis method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 32.1.14, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.2938

Association of Analytical Communities. (2023c). Official method 920.151. Solids (Total) in fruits and fruit products. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 37.1.12, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3365

Association of Analytical Communities. (2023d). Official method 940.26. Ash of fruits and fruit products. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 37.1.18, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3371

Association of Analytical Communities. (2023e). Official method 985.29. Total dietary fiber in foods: Enzymatic–gravimetric method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 45.4.07, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3808

Association of Analytical Communities. (2023f). Official method 985.35. Minerals in infant formula, enteral products, and pet foods: Atomic absorption spectrophotometric method. In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 50.1.14, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.4040

Association of Analytical Communities. (2023g). Official method 981.12. pH of acidified foods (2023). In G. W. Latimer, Jr. (Ed.), Official methods of analysis of AOAC International (Chapter 42.1.04, 22nd ed.). Oxford University Press. https://doi.org/10.1093/9780197610145.003.3563

Blanco, P. (2011, enero 19). Estudian potencial de explotación de microalgas nativas. Seminario Universidad. https://historico.semanariouniversidad.com/suplementos/crisol/estudian-potencial-de-explotacin-de-microalgas-nativas/

Böcker, L., Ortmann, S., Surber, J., Leeb, E., Reineke, K., & Mathys, A. (2019). Biphasic short time heat degradation of the blue microalgae protein phycocyanin from Arthrospira platensis. Innovative Food Science and Emerging Technologies, 52, 116–121. https://doi.org/10.1016/j.ifset.2018.11.007

Buruk Sahin, Y., Aktar Demirtas, E., & Burnak, N. (2016). Mixture design: a review of recent applications in the food industry. Pamukkale University Journal of Engineering Sciences, 22(4), 297–304. https://doi.org/10.5505/pajes.2015.98598

Cabrera Castro, J. de J. (2014). Optimización de variables de proceso para la reducción del tiempo de reproceso en el reactor tipo Batch, en la manufactura de adhesivos PU por medio de diseño experimental MSR [Tesis de Maestría, Centro de Innovación Aplicada a Tecnologías Competitivas]. Repositorio CIATEC. https://ciatec.repositorioinstitucional.mx/jspui/handle/1019/111

Di Giorgio, G., & Pérez, S. (2023). Aplicación del diseño de mezclas y metodologías sensoriales rápidas para la formulación de una galleta salada a base de harina de garbanzos. Tekhné, 26(3), 1–27. https://doi.org/10.62876/tekhn.v26i3.6306

Food and Drug Administration. (2023). Valor diario y porcentaje de valor diario en las etiquetas de información nutricional y complementaria. https://www.fda.gov/media/137914/download

Georgé, S., Brat, P., Alter, P., & Amiot, M. J. (2005). Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and Food Chemistry, 53(5), 1370–1373. https://doi.org/10.1021/jf048396b

Gómez Payán, M. J., Romero López, R., Molina Arredondo, R. D., Terrazas Porras, S. M., & Núñez Ortega, O. (2015). Uso de la metodología del diseño por mezclas en el sector agrícola. Culcyt, 55(1), 201–211. https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/761/728

Gutiérrez-Salmeán, G., Fabila-Castillo, L., & Chamarro-Cervallos, G. (2015). Aspectos nutricionales y toxicológicos de Spirulina (Arthrospira). Nutrición Hospitalaria 32(1), 34–40. https://doi.org/10.3305/nh.2015.32.1.9001

Gutiérrez Valencia, T. M., Hoyos Saavedra, O. L., & Cuervo Ochoa, G. (2016). Estudio cinético de la degradación térmica de trans-β- caroteno en uchuva. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(1), 126–134. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/467

Gutiérrez Vergary, K. A., & Tello Echeverría, L. A. (2018). Evaluación de la incorporación de espirulina sobre propiedades nutricionales y sensoriales de una galleta a base de harina de trigo y kiwicha [Tesis de licenciatura, Universidad Peruana de Ciencias Aplicadas]. Repositorio Académico UPC. https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/624916/Guti%c3%a9rrez_VK.pdf?sequence=1&isAllowed=y

Halagarda, M., & Suwała, G. (2018). Sensory optimization in new food product development: a case study of polish apple juice. Italian Journal of Food Science, 30(2), 317–335. https://doi.org/10.14674/IJFS-960

Hempel, J. (2013). Characterization of morphological and chemical traits of Bactris gasipaes fruits with special reference to their carotenoid composition [Master thesis, University of Hohenheim]. University of Hohenheim Repository. https://www.stiftung-fiat-panis.de/images/DF/DF538.pdf

Hernández-Lepe, M. A., Wall-Medrano, A., Juárez-Oropeza, M. A., Ramos-Jiménez, A., & Hernández-Torres, R. P. (2015). Spirulina y su efecto hipolipemiante y antioxidante en humanos: una revisión sistemática. Nutrición Hospitalaria, 32(2), 494–500. https://dx.doi.org/10.3305/nh.2015.32.2.9100

Innocent Drinks. (n.d.). Innocent Plus. Retrieved March 20, 2024, from https://www.innocentdrinks.co.uk/things-we-make/innocent-plus

Kissoudi, M., Sarakatsianos, I., & Samanidou, V. (2018). Isolation and purification of food grade C-phycocyanin from Arthrospira platensis and its determination in confectionery by HPLC with diode array detection. Journal of Separation Science, 41(4), 975–981. https://doi.org/10.1002/jssc.201701151

Kumar, R., Hegde, A. S., Sharma, K., Parmar, P., & Srivatsan, V. (2022). Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Research International, 157, Article 111338. https://doi.org/10.1016/j.foodres.2022.111338

Lee, S. -H., Lee, J. E., Kim, Y., & Lee, S. -Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied Biochemistry and Biotechnology, 178, 382–395. https://doi.org/10.1007/s12010-015-1879-5

Lietzow, J., Sashse, B., & Schäfer B. (2022). Drinking your greens: green smoothies from a nutritional and toxicological point of view. Ernahrungs Umschau, 69(8), 126–135. https://doi.org/10.4455/eu.2022.024

Linskens, H. F., & Jackson, J. F. (1988). Wine analysis. In H. F. Linskens, & J. F. Jackson. (Eds.), Wine analysis. modern methods of plant analysis (Vol. 6, pp. 1–8). Springer. https://doi.org/10.1007/978-3-642-83340-3

Lykkesfeldt, J. (2000). Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris [2-carboxyethyl] phosphine hydrochloride. Analytical Biochemistry, 282(1), 89–93. https://doi.org/10.1006/abio.2000.4592

Malpartida, Y, R., Aldana, F. L., Sánchez, S. K., Gómez, H. L., & Lobo, P. J. (2022). Valor nutricional y compuestos químicos bioactivos de la espirulina: potencial suplemento alimenticio. Ecuadorian Science Journal, 6(1), 42–51. https://doi.org/10.46480/esj.6.1.133

Marín-Prida, J., Llópiz-Arzuaga, A., Pavón, N., Pentón-Rol, G., & Pardo-Andreu, G. L. (2015). Aplicaciones de la CFicocianina: Métodos de obtención y propiedades farmacológicas. Revista de ciencias Farmacéuticas y Alimentarias, 1(1), 29–43. https://revistas.uh.cu/rcfa/article/view/5185/4372

Marlina, D., & Nurhayati, F. (2020). The effectiveness of spirulina compared with iron supplement on anemia among pregnant women in Indonesia. International Journal of Caring, 13(3), 1783–1787. https://www.internationaljournalofcaringsciences.org/docs/28_nurhayiati_original_13_3.pdf

Martí, N., Mena, P., Cánovas, J. A., Micol, V., & Saura, D. (2009). Vitamin C and the role of citrus juices as functional food. Natural Product Communications, 4(5), 677–700. https://doi.org/10.1177/1934578X090040050

Mathias Rettig, K. A. (2014). Estabilidad de pigmentos naturales, polifenoles y capacidad antioxidante de jugo de Murta (Ugni molinae Turez) [Tesis de Magíster, Universidad Austral de Chile]. Repositorio de la Universidad Austral de Chile. http://cybertesis.uach.cl/tesis/uach/2014/egm444e/doc/egm444e.pdf

Mohammed, I. A., Ruengjitchatchawalya, M., & Paithoonrangsarid, K. (2023). Cultivation manipulating zeaxanthin-carotenoid production in Arthrospira (Spirulina) platensis under light and temperature stress. Algal Research, 76, Artículo 103315. https://doi.org/10.1016/j.algal.2023.103315

Moreno García, L. C. (2016). Estudio de la estabilidad de la C-Ficocianina [Trabajo de grado, Universidad de Almería]. Repositorio de la Universidad de Almería. https://repositorio.ual.es/handle/10835/4666

Navarro González, I., Periago, M. J., & García Alonso, J. F. (2017). Estimación de la ingesta diaria de compuestos fenólicos en la población española. Revista Española de Nutrición Humana y Dietétic, 21(4), 320–326. https://doi.org/10.14306/renhyd.21.4.357

Nu Smoothie (n.d.). Green smoothie. Retrieved March 20, 2024, from https://nusmoothies.com/nos-jus/3

Ochoa Galarza, K., & Moyano Calero, W. (2022). Aplicaciones de la espirulina - planta marina: revisión panorámica. Salud, Ciencia y Tecnología, 2, Artículo 174. https://doi.org/10.56294/saludcyt2022174

Padilla-Zakour, O. (2009). Good manufacturing practices. In N. Heredia, I. Wesley, & S. García (Eds.), Microbiologically safe foods (pp. 395–414). John Wiley & Sons. https://doi.org/10.1002/9780470439074.ch20

Patil, G., Chethana, S., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2008). Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresource Technology, 99(15), 7393–7396. https://doi.org/10.1016/j.biortech.2008.01.028

Pez Jaeshke, D., Rocha Teixeira, I., Ferreira Marczak, L. D., & Domeneghini Mercali, D. (2021). Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 143, Article 110314. https://doi.org/10.1016/j.foodres.2021.110314

Presidencia de la República, Ministerio de Comercio Exterior, Economía Industria y Comercio, & Ministerio de Salud. (2012, 02 de julio). Decreto ejecutivo N° 37295-COMEX-MEIC-S. Resolución N° 281-2012 (COMIECO-LXII) de 14 de mayo del 2012, modificaciones al Reglamento Técnico Centroamericano RTCA 67.01.60:10 “Etiquetado Nutricional de Productos Alimenticios Preenvasados para Consumo Humano para población a partir de 3 años. Sistema Costarricense de Información Jurídica. https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=73307&nValor3=89923&strTipM=TC

Quirós, A. M., Acosta, O. G., Thompson, E., & Soto, M. (2019). Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) by-product. Journal of Food Process Engineering, 42(4), Article e13051. https://doi.org/10.1111/JFPE.13051

Rudnykh, S. I, & López-Ríos, V. I. (2018). Elección de la función de deseabilidad para diseños óptimos bajo restricciones. Revista EIA, 15(30), 13–24. https://doi.org/10.24050/reia.v15i30.903

Ruiz-Capillas, C., Herrero, A. M., Pintado, T., & Delgado-Pando, G. (2021). Sensory analysis and consumer research in new meat products development. Foods, 10(2), Artículo 429. https://doi.org/10.3390/foods10020429

Salamanca Grosso, G., Reyes Méndez, L. M., Osorio Tangarife, M. P., & Rodríguez Arias, N. (2015). Diseño experimental de mezclas como herramienta para la optimización de cremolácteos de mango. Revista Colombiana de Investigaciones Agroindustriales, 2(1), 16–24. https://doi.org/10.23850/24220582.166

Salas Murillo, O. (2020, febrero 11). El cultivo de algas marinas revolucionaría la acuacultura nacional: un proyecto de ingeniería de biosistemas promueve el desarrollo de una industria de producción en Costa Rica. Universidad de Costa Rica. https://www.ucr.ac.cr/noticias/2020/2/11/el-cultivo-de-algas-marinas-revolucionaria-la-acuacultura-nacional.html

Umaña Venegas, J. (2019, septiembre 11). Es factible producir microalgas para alimento animal y a la vez ayudar al ambiente. Hoy en el TEC. https://www.tec.ac.cr/hoyeneltec/2019/09/11/factible-producir-microalgas-alimento-animal-vez-ayudar-ambiente

Vázquez Pérez, R. N., Hernández Uribe, F., Villegas Aguilera, M. M., Martínez Murillo, R., López García, K. E., Pérez Barragán, C. E., & Arredondo Vega, B. O. (2016). Evaluación del contenido de proteínas de la biomasa de Spirulina (Arthrospira) Maxima cultivada en condiciones ambientales en bioreactores. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 1(1), 333–337. http://www.fcb.uanl.mx/IDCyTA/files/volume1/1/2/56.pdf

Villalta-Romero, F., Murillo-Vega, F., Martínez-Gutiérrez, B., Valverde-Cerdas, J., Sánchez-Kopper, A., & Guerrero-Barrantes, M. (2019). Biotecnología microalgal en Costa Rica: Oportunidades de negocio para el sector productivo nacional. Tecnología En Marcha, 32(9), 85–93. https://doi.org/10.18845/tm.v32i9.4634

Villanueva, N. D. M., Petenate, A. J., & Da Silva, M. A. P. (2005). Performance of the hybrid hedonic scale as compared to the traditional hedonic, self-adjusting and ranking scales. Food Quality and Preference, 16(8), 691–703. https://doi.org/10.1016/j.foodqual.2005.03.013

Wichchukit, S., & O´Mahony, M. (2015). The 9-point hedonic scale and hedonic ranking in food science: some reappraisals and alternatives. Journal of the Science of Food and Agriculture, 95(11), 2167–2178. https://doi.org/10.1002/jsfa.6993

Published

2024-11-21

How to Cite

Bolaños-Quirós, F., Fallas-Rodríguez, P., Murillo-González, L., Pérez, A. M., & Quirós, A. M. (2024). Development of a green drink with spirulina (Arthrospira sp.) using the experimental mixture design. Agronomía Mesoamericana, 35(Especial 1), 60115. https://doi.org/10.15517/am.2024.60115